首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
Machine Learning Pedro Domingos
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-1-6 12:45
2024-10-31 21:07
139
8.44 GB
113
磁力链接
magnet:?xt=urn:btih:0db676a6aaff8c33f9749d5f9c0fa22bf336bc76
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjBkYjY3NmE2YWFmZjhjMzNmOTc0OWQ1ZjljMGZhMjJiZjMzNmJjNzZaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Machine
Learning
Pedro
Domingos
文件列表
01 Introduction & Inductive learning/10. A Framework for Studying Inductive Learning.mp4
201.81MB
01 Introduction & Inductive learning/2. What Is Machine Learning.mp4
47.34MB
01 Introduction & Inductive learning/3. Applications of Machine Learning.mp4
72.6MB
01 Introduction & Inductive learning/4. Key Elements of Machine Learning.mp4
138.36MB
01 Introduction & Inductive learning/5. Types of Learning.mp4
69.72MB
01 Introduction & Inductive learning/6. Machine Learning In Practice.mp4
87.65MB
01 Introduction & Inductive learning/7. What Is Inductive Learning.mp4
28.07MB
01 Introduction & Inductive learning/8. When Should You Use Inductive Learning.mp4
59.29MB
01 Introduction & Inductive learning/9. The Essence of Inductive Learning.mp4
182.51MB
01 Introduction & Inductive learning/1. Class Information.mp4
27.87MB
02 Decision Trees/1. Decision Trees.mp4
40.09MB
02 Decision Trees/2. What Can a Decision Tree Represent.mp4
26.71MB
02 Decision Trees/3. Growing a Decision Tree.mp4
27.79MB
02 Decision Trees/4. Accuracy and Information Gain.mp4
139.93MB
02 Decision Trees/5. Learning with Non Boolean Features.mp4
40.83MB
02 Decision Trees/6. The Parity Problem.mp4
31.96MB
02 Decision Trees/7. Learning with Many Valued Attributes.mp4
39.4MB
02 Decision Trees/8. Learning with Missing Values.mp4
71.97MB
02 Decision Trees/9. The Overfitting Problem.mp4
49.15MB
02 Decision Trees/10. Decision Tree Pruning.mp4
132.24MB
02 Decision Trees/11. Post Pruning Trees to Rules.mp4
149.22MB
02 Decision Trees/12. Scaling Up Decision Tree Learning.mp4
48.81MB
03 Rule Induction/1. Rules vs. Decision Trees.mp4
114.98MB
03 Rule Induction/2. Learning a Set of Rules.mp4
94.67MB
03 Rule Induction/3. Estimating Probabilities from Small Samples.mp4
75.97MB
03 Rule Induction/4. Learning Rules for Multiple Classes.mp4
42.73MB
03 Rule Induction/5. First Order Rules.mp4
76.76MB
03 Rule Induction/6. Learning First Order Rules Using FOIL.mp4
186.93MB
03 Rule Induction/7. Induction as Inverted Deduction.mp4
132.9MB
03 Rule Induction/8. Inverting Propositional Resolution.mp4
68.84MB
03 Rule Induction/9. Inverting First Order Resolution.mp4
149.08MB
04 Instance-Based Learning/1. The K-Nearest Neighbor Algorithm.mp4
151.1MB
04 Instance-Based Learning/2. Theoretical Guarantees on k-NN.mp4
98.11MB
04 Instance-Based Learning/4. The Curse of Dimensionality.mp4
128.31MB
04 Instance-Based Learning/5. Feature Selection and Weighting.mp4
96.68MB
04 Instance-Based Learning/6. Reducing the Computational Cost of k-NN.mp4
94.67MB
04 Instance-Based Learning/7. Avoiding Overfitting in k-NN.mp4
52.61MB
04 Instance-Based Learning/8. Locally Weighted Regression.mp4
38.54MB
04 Instance-Based Learning/9. Radial Basis Function Networks.mp4
31.65MB
04 Instance-Based Learning/10 Case-Based Reasoning.mp4
37.04MB
04 Instance-Based Learning/11. Lazy vs. Eager Learning.mp4
26.37MB
04 Instance-Based Learning/12. Collaborative Filtering.mp4
148.81MB
05 Bayesian Learning/1. Bayesian Methods.mp4
22.13MB
05 Bayesian Learning/2. Bayes' Theorem and MAP Hypotheses.mp4
193.26MB
05 Bayesian Learning/3. Basic Probability Formulas.mp4
46.79MB
05 Bayesian Learning/4. MAP Learning.mp4
101.36MB
05 Bayesian Learning/5. Learning a Real-Valued Function.mp4
78.49MB
05 Bayesian Learning/6. Bayes Optimal Classifier and Gibbs Classifier.mp4
77.89MB
05 Bayesian Learning/7. The Naive Bayes Classifier.mp4
187.05MB
05 Bayesian Learning/8. Text Classification.mp4
88.41MB
05 Bayesian Learning/9. Bayesian Networks.mp4
169.65MB
05 Bayesian Learning/10. Inference in Bayesian Networks.mp4
32.3MB
06 Neural Networks/1. Bayesian Network Review.mp4
18.45MB
06 Neural Networks/2. Learning Bayesian Networks.mp4
31.16MB
06 Neural Networks/3. The EM Algorithm.mp4
62.22MB
06 Neural Networks/4. Example of EM.mp4
64.65MB
06 Neural Networks/5. Learning Bayesian Network Structure.mp4
140.09MB
06 Neural Networks/6. The Structural EM Algorithm.mp4
19.88MB
06 Neural Networks/7. Reverse Engineering the Brain.mp4
59MB
06 Neural Networks/8. Neural Network Driving a Car.mp4
108.47MB
06 Neural Networks/9. How Neurons Work.mp4
62.95MB
06 Neural Networks/10. The Perceptron.mp4
93.5MB
06 Neural Networks/11. Perceptron Training.mp4
79.83MB
06 Neural Networks/12. Gradient Descent.mp4
42.02MB
07 Model Ensembles/1. Gradient Descent Continued.mp4
44.04MB
07 Model Ensembles/2. Gradient Descent vs Perceptron Training.mp4
53.96MB
07 Model Ensembles/3. Stochastic Gradient Descent.mp4
32.22MB
07 Model Ensembles/4. Multilayer Perceptrons.mp4
72.33MB
07 Model Ensembles/5. Backpropagation.mp4
95.82MB
07 Model Ensembles/6. Issues in Backpropagation.mp4
120.86MB
07 Model Ensembles/7. Learning Hidden Layer Representations.mp4
67.97MB
07 Model Ensembles/8. Expressiveness of Neural Networks.mp4
36.22MB
07 Model Ensembles/9. Avoiding Overfitting in Neural Networks.mp4
48.94MB
07 Model Ensembles/10. Model Ensembles.mp4
14.75MB
07 Model Ensembles/11. Bagging.mp4
43.39MB
07 Model Ensembles/12. Boosting- The Basics.mp4
38.93MB
08 Learning Theory/1. Boosting- The Details.mp4
59.03MB
08 Learning Theory/2. Error Correcting Output Coding.mp4
84.78MB
08 Learning Theory/3. Stacking.mp4
83.95MB
08 Learning Theory/4. Learning Theory.mp4
13.68MB
08 Learning Theory/5. 'No Free Lunch' Theorems.mp4
85.54MB
08 Learning Theory/6. Practical Consequences of 'No Free Lunch'.mp4
46.05MB
08 Learning Theory/7. Bias and Variance.mp4
88.09MB
08 Learning Theory/8. Bias Variance Decomposition for Squared Loss.mp4
30.26MB
08 Learning Theory/9. General Bias Variance Decomposition.mp4
84.14MB
08 Learning Theory/10. Bias-Variance Decomposition for Zer -One Loss.mp4
30.88MB
08 Learning Theory/11. Bias and Variance for Other Loss Functions.mp4
31.01MB
08 Learning Theory/12. PAC Learning.mp4
47.87MB
08 Learning Theory/13. How Many Examples Are Enough.mp4
108.75MB
08 Learning Theory/14. Examples and Definition of PAC Learning.mp4
37.93MB
09 Support Vector Machine/1. Agnostic Learning.mp4
97.96MB
09 Support Vector Machine/2. VC Dimension.mp4
72.96MB
09 Support Vector Machine/3. VC Dimension of Hyperplanes.mp4
75.24MB
09 Support Vector Machine/4. Sample Complexity from VC Dimension.mp4
9.29MB
09 Support Vector Machine/5. Support Vector Machines.mp4
55.28MB
09 Support Vector Machine/6. Perceptrons as Instance-Based Learning.mp4
98.82MB
09 Support Vector Machine/7. Kernels.mp4
123.96MB
09 Support Vector Machine/8. Learning SVMs.mp4
117.58MB
09 Support Vector Machine/9. Constrained Optimization.mp4
140.76MB
09 Support Vector Machine/10. Optimization with Inequality Constraints.mp4
113.9MB
09 Support Vector Machine/11. The SMO Algorithm.mp4
47.88MB
10 Clustering and Dimensionality Reduction/1. Handling Noisy Data in SVMs.mp4
62.58MB
10 Clustering and Dimensionality Reduction/2. Generalization Bounds for SVMs.mp4
71.01MB
10 Clustering and Dimensionality Reduction/3. Clustering and Dimensionality Reduction.mp4
61.91MB
10 Clustering and Dimensionality Reduction/4. K-Means Clustering.mp4
53.29MB
10 Clustering and Dimensionality Reduction/5. Mixture Models.mp4
111.61MB
10 Clustering and Dimensionality Reduction/6. Mixtures of Gaussians.mp4
41.64MB
10 Clustering and Dimensionality Reduction/7. EM Algorithm for Mixtures of Gaussians.mp4
96.14MB
10 Clustering and Dimensionality Reduction/8. Mixture Models vs K-Means vs. Bayesian Networks.mp4
57.56MB
10 Clustering and Dimensionality Reduction/9. Hierarchical Clustering.mp4
36.59MB
10 Clustering and Dimensionality Reduction/10. Principal Components Analysis.mp4
107.06MB
10 Clustering and Dimensionality Reduction/11. Multidimensional Scaling.mp4
55.93MB
10 Clustering and Dimensionality Reduction/12. Nonlinear Dimensionality Reduction.mp4
96.75MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统