首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Neural Networks (ANN) using Keras and TensorFlow in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-5-7 02:09 2025-1-6 17:09 366 2.99 GB 61
二维码链接
[DesireCourse.Net] Udemy - Neural Networks (ANN) using Keras and TensorFlow in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Welcome to the course.mp421.42MB
  2. 1. Introduction/2. Introduction to Neural Networks and Course flow.mp429.08MB
  3. 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp410.81MB
  4. 10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp479.14MB
  5. 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp481.71MB
  6. 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp469.93MB
  7. 11. Python - Solving a Regression problem using ANN/1. Building Neural Network for Regression Problem.mp4155.88MB
  8. 12. Complex ANN Architectures using Functional API/1. Using Functional API for complex architectures.mp492.12MB
  9. 13. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4151.58MB
  10. 14. Hyperparameter Tuning/1. Hyperparameter Tuning.mp460.63MB
  11. 15. Add-on 1 Data Preprocessing/1. Gathering Business Knowledge.mp422.29MB
  12. 15. Add-on 1 Data Preprocessing/10. Missing Value Imputation.mp425.01MB
  13. 15. Add-on 1 Data Preprocessing/11. Missing Value Imputation in Python.mp423.42MB
  14. 15. Add-on 1 Data Preprocessing/12. Seasonality in Data.mp417.03MB
  15. 15. Add-on 1 Data Preprocessing/13. Bi-variate analysis and Variable transformation.mp4100.43MB
  16. 15. Add-on 1 Data Preprocessing/14. Variable transformation and deletion in Python.mp444.09MB
  17. 15. Add-on 1 Data Preprocessing/15. Non-usable variables.mp420.25MB
  18. 15. Add-on 1 Data Preprocessing/16. Dummy variable creation Handling qualitative data.mp436.83MB
  19. 15. Add-on 1 Data Preprocessing/17. Dummy variable creation in Python.mp426.53MB
  20. 15. Add-on 1 Data Preprocessing/18. Correlation Analysis.mp471.6MB
  21. 15. Add-on 1 Data Preprocessing/19. Correlation Analysis in Python.mp455.31MB
  22. 15. Add-on 1 Data Preprocessing/2. Data Exploration.mp420.52MB
  23. 15. Add-on 1 Data Preprocessing/3. The Dataset and the Data Dictionary.mp469.37MB
  24. 15. Add-on 1 Data Preprocessing/5. Importing Data in Python.mp427.83MB
  25. 15. Add-on 1 Data Preprocessing/6. Univariate analysis and EDD.mp424.2MB
  26. 15. Add-on 1 Data Preprocessing/7. EDD in Python.mp461.78MB
  27. 15. Add-on 1 Data Preprocessing/8. Outlier Treatment.mp424.47MB
  28. 15. Add-on 1 Data Preprocessing/9. Outlier Treatment in Python.mp470.23MB
  29. 16. Add-on 2 Classic ML models - Linear Regression/1. The Problem Statement.mp49.38MB
  30. 16. Add-on 2 Classic ML models - Linear Regression/10. Test-train split.mp441.88MB
  31. 16. Add-on 2 Classic ML models - Linear Regression/11. Bias Variance trade-off.mp425.11MB
  32. 16. Add-on 2 Classic ML models - Linear Regression/12. Test train split in Python.mp444.87MB
  33. 16. Add-on 2 Classic ML models - Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp443.36MB
  34. 16. Add-on 2 Classic ML models - Linear Regression/3. Assessing accuracy of predicted coefficients.mp492.14MB
  35. 16. Add-on 2 Classic ML models - Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp443.63MB
  36. 16. Add-on 2 Classic ML models - Linear Regression/5. Simple Linear Regression in Python.mp463.43MB
  37. 16. Add-on 2 Classic ML models - Linear Regression/6. Multiple Linear Regression.mp434.33MB
  38. 16. Add-on 2 Classic ML models - Linear Regression/7. The F - statistic.mp456.01MB
  39. 16. Add-on 2 Classic ML models - Linear Regression/8. Interpreting results of Categorical variables.mp422.51MB
  40. 16. Add-on 2 Classic ML models - Linear Regression/9. Multiple Linear Regression in Python.mp469.75MB
  41. 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp416.27MB
  42. 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp465.17MB
  43. 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp440.92MB
  44. 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp412.75MB
  45. 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp464.43MB
  46. 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp460.32MB
  47. 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp443.88MB
  48. 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp446.9MB
  49. 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp440.36MB
  50. 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp444.77MB
  51. 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp434.62MB
  52. 3. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp486.6MB
  53. 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp440.42MB
  54. 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp460.33MB
  55. 4. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4122.2MB
  56. 5. Important concepts Common Interview questions/1. Some Important Concepts.mp462.17MB
  57. 6. Standard Model Parameters/1. Hyperparameters.mp445.36MB
  58. 8. Tensorflow and Keras/1. Keras and Tensorflow.mp414.92MB
  59. 8. Tensorflow and Keras/2. Installing Tensorflow and Keras.mp420.07MB
  60. 9. Python - Dataset for classification problem/1. Dataset for classification.mp456.13MB
  61. 9. Python - Dataset for classification problem/2. Normalization and Test-Train split.mp444.2MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统