首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Artificial Intelligence Reinforcement Learning in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-10-30 09:16 2024-12-31 15:26 212 1.9 GB 98
二维码链接
[DesireCourse.Net] Udemy - Artificial Intelligence Reinforcement Learning in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Welcome/1. Introduction.mp434.24MB
  2. 1. Welcome/2. Where to get the Code.mp44.45MB
  3. 1. Welcome/3. Strategy for Passing the Course.mp49.48MB
  4. 1. Welcome/4. Course Outline.mp430.97MB
  5. 10. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.mp426.77MB
  6. 10. Stock Trading Project with Reinforcement Learning/2. Data and Environment.mp452.01MB
  7. 10. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.mp444.89MB
  8. 10. Stock Trading Project with Reinforcement Learning/4. Design of the Program.mp423.31MB
  9. 10. Stock Trading Project with Reinforcement Learning/5. Code pt 1.mp449.72MB
  10. 10. Stock Trading Project with Reinforcement Learning/6. Code pt 2.mp465.29MB
  11. 10. Stock Trading Project with Reinforcement Learning/7. Code pt 3.mp433.72MB
  12. 10. Stock Trading Project with Reinforcement Learning/8. Code pt 4.mp449.08MB
  13. 10. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.mp415.78MB
  14. 11. Appendix FAQ/1. What is the Appendix.mp45.45MB
  15. 11. Appendix FAQ/10. What order should I take your courses in (part 1).mp429.32MB
  16. 11. Appendix FAQ/11. What order should I take your courses in (part 2).mp437.62MB
  17. 11. Appendix FAQ/12. BONUS Where to get discount coupons and FREE deep learning material.mp437.83MB
  18. 11. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4186.38MB
  19. 11. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  20. 11. Appendix FAQ/4. How to Code by Yourself (part 1).mp424.54MB
  21. 11. Appendix FAQ/5. How to Code by Yourself (part 2).mp414.8MB
  22. 11. Appendix FAQ/6. How to Succeed in this Course (Long Version).mp418.31MB
  23. 11. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.95MB
  24. 11. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp478.32MB
  25. 11. Appendix FAQ/9. Python 2 vs Python 3.mp47.84MB
  26. 2. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.mp46.47MB
  27. 2. Return of the Multi-Armed Bandit/10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp410.57MB
  28. 2. Return of the Multi-Armed Bandit/11. Nonstationary Bandits.mp47.48MB
  29. 2. Return of the Multi-Armed Bandit/12. Bandit Summary, Real Data, and Online Learning.mp433.92MB
  30. 2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp451.18MB
  31. 2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy.mp42.78MB
  32. 2. Return of the Multi-Armed Bandit/4. Updating a Sample Mean.mp42.18MB
  33. 2. Return of the Multi-Armed Bandit/5. Designing Your Bandit Program.mp424.51MB
  34. 2. Return of the Multi-Armed Bandit/6. Comparing Different Epsilons.mp48.01MB
  35. 2. Return of the Multi-Armed Bandit/7. Optimistic Initial Values.mp415.84MB
  36. 2. Return of the Multi-Armed Bandit/8. UCB1.mp48.23MB
  37. 2. Return of the Multi-Armed Bandit/9. Bayesian Thompson Sampling.mp451.85MB
  38. 3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp454.62MB
  39. 3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.mp437.1MB
  40. 3. High Level Overview of Reinforcement Learning/3. Defining Some Terms.mp442.34MB
  41. 4. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.mp46.12MB
  42. 4. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.mp49.44MB
  43. 4. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.mp48.32MB
  44. 4. Build an Intelligent Tic-Tac-Toe Agent/12. Tic Tac Toe Exercise.mp419.77MB
  45. 4. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.mp412.71MB
  46. 4. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.mp44.22MB
  47. 4. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.mp4103.72MB
  48. 4. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.mp45.04MB
  49. 4. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.mp44.42MB
  50. 4. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.mp49.79MB
  51. 4. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.mp410.05MB
  52. 4. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.mp49.01MB
  53. 5. Markov Decision Proccesses/1. Gridworld.mp43.36MB
  54. 5. Markov Decision Proccesses/2. The Markov Property.mp47.18MB
  55. 5. Markov Decision Proccesses/3. Defining and Formalizing the MDP.mp46.64MB
  56. 5. Markov Decision Proccesses/4. Future Rewards.mp45.17MB
  57. 5. Markov Decision Proccesses/5. Value Function Introduction.mp419.72MB
  58. 5. Markov Decision Proccesses/6. Value Functions.mp48.29MB
  59. 5. Markov Decision Proccesses/7. Bellman Examples.mp487.12MB
  60. 5. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.mp43.23MB
  61. 5. Markov Decision Proccesses/9. MDP Summary.mp45.67MB
  62. 6. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp44.83MB
  63. 6. Dynamic Programming/10. Value Iteration in Code.mp44.89MB
  64. 6. Dynamic Programming/11. Dynamic Programming Summary.mp48.31MB
  65. 6. Dynamic Programming/2. Gridworld in Code.mp411.46MB
  66. 6. Dynamic Programming/3. Designing Your RL Program.mp422.34MB
  67. 6. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp412.06MB
  68. 6. Dynamic Programming/5. Policy Improvement.mp44.53MB
  69. 6. Dynamic Programming/6. Policy Iteration.mp43.14MB
  70. 6. Dynamic Programming/7. Policy Iteration in Code.mp47.62MB
  71. 6. Dynamic Programming/8. Policy Iteration in Windy Gridworld.mp49.1MB
  72. 6. Dynamic Programming/9. Value Iteration.mp46.18MB
  73. 7. Monte Carlo/1. Monte Carlo Intro.mp44.97MB
  74. 7. Monte Carlo/2. Monte Carlo Policy Evaluation.mp48.75MB
  75. 7. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp47.92MB
  76. 7. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp47.81MB
  77. 7. Monte Carlo/5. Monte Carlo Control.mp49.26MB
  78. 7. Monte Carlo/6. Monte Carlo Control in Code.mp410.17MB
  79. 7. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp44.62MB
  80. 7. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp48.06MB
  81. 7. Monte Carlo/9. Monte Carlo Summary.mp45.71MB
  82. 8. Temporal Difference Learning/1. Temporal Difference Intro.mp42.73MB
  83. 8. Temporal Difference Learning/2. TD(0) Prediction.mp45.82MB
  84. 8. Temporal Difference Learning/3. TD(0) Prediction in Code.mp45.32MB
  85. 8. Temporal Difference Learning/4. SARSA.mp48.2MB
  86. 8. Temporal Difference Learning/5. SARSA in Code.mp48.82MB
  87. 8. Temporal Difference Learning/6. Q Learning.mp44.84MB
  88. 8. Temporal Difference Learning/7. Q Learning in Code.mp45.42MB
  89. 8. Temporal Difference Learning/8. TD Summary.mp43.94MB
  90. 9. Approximation Methods/1. Approximation Intro.mp46.47MB
  91. 9. Approximation Methods/2. Linear Models for Reinforcement Learning.mp46.47MB
  92. 9. Approximation Methods/3. Features.mp46.25MB
  93. 9. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp42.85MB
  94. 9. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp46.57MB
  95. 9. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp48.36MB
  96. 9. Approximation Methods/7. Semi-Gradient SARSA.mp44.7MB
  97. 9. Approximation Methods/8. Semi-Gradient SARSA in Code.mp410.61MB
  98. 9. Approximation Methods/9. Course Summary and Next Steps.mp413.24MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统