首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeCourseSite.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-12-5 00:08
2025-1-19 21:27
271
1.19 GB
81
磁力链接
magnet:?xt=urn:btih:2c2ece5a1762052507c7237eff15c94a55f65c72
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjJjMmVjZTVhMTc2MjA1MjUwN2M3MjM3ZWZmMTVjOTRhNTVmNjVjNzJaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeCourseSite
com
Udemy
-
Artificial
Intelligence
Reinforcement
Learning
in
Python
文件列表
1. Introduction and Outline/1. Introduction and outline.mp4
10.1MB
1. Introduction and Outline/2. What is Reinforcement Learning.mp4
21.95MB
1. Introduction and Outline/3. Where to get the Code.mp4
4.46MB
1. Introduction and Outline/4. Strategy for Passing the Course.mp4
9.48MB
2. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.mp4
6.48MB
2. Return of the Multi-Armed Bandit/2. Epsilon-Greedy.mp4
2.79MB
2. Return of the Multi-Armed Bandit/3. Updating a Sample Mean.mp4
2.17MB
2. Return of the Multi-Armed Bandit/4. Comparing Different Epsilons.mp4
8.02MB
2. Return of the Multi-Armed Bandit/5. Optimistic Initial Values.mp4
5.13MB
2. Return of the Multi-Armed Bandit/6. UCB1.mp4
8.23MB
2. Return of the Multi-Armed Bandit/7. Bayesian Thompson Sampling.mp4
51.85MB
2. Return of the Multi-Armed Bandit/8. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4
10.57MB
2. Return of the Multi-Armed Bandit/9. Nonstationary Bandits.mp4
7.49MB
3. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.mp4
6.11MB
3. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.mp4
9.44MB
3. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.mp4
8.32MB
3. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.mp4
12.72MB
3. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.mp4
4.23MB
3. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.mp4
103.72MB
3. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.mp4
5.04MB
3. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.mp4
4.42MB
3. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.mp4
9.79MB
3. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.mp4
10.05MB
3. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.mp4
9.01MB
4. Markov Decision Proccesses/1. Gridworld.mp4
3.36MB
4. Markov Decision Proccesses/2. The Markov Property.mp4
7.18MB
4. Markov Decision Proccesses/3. Defining and Formalizing the MDP.mp4
6.64MB
4. Markov Decision Proccesses/4. Future Rewards.mp4
5.17MB
4. Markov Decision Proccesses/5. Value Function Introduction.mp4
19.72MB
4. Markov Decision Proccesses/6. Value Functions.mp4
8.28MB
4. Markov Decision Proccesses/7. Bellman Examples.mp4
87.12MB
4. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.mp4
3.24MB
4. Markov Decision Proccesses/9. MDP Summary.mp4
2.42MB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4
4.83MB
5. Dynamic Programming/10. Dynamic Programming Summary.mp4
8.32MB
5. Dynamic Programming/2. Gridworld in Code.mp4
11.46MB
5. Dynamic Programming/3. Iterative Policy Evaluation in Code.mp4
12.07MB
5. Dynamic Programming/4. Policy Improvement.mp4
4.54MB
5. Dynamic Programming/5. Policy Iteration.mp4
3.14MB
5. Dynamic Programming/6. Policy Iteration in Code.mp4
7.62MB
5. Dynamic Programming/7. Policy Iteration in Windy Gridworld.mp4
9.1MB
5. Dynamic Programming/8. Value Iteration.mp4
6.19MB
5. Dynamic Programming/9. Value Iteration in Code.mp4
4.9MB
6. Monte Carlo/1. Monte Carlo Intro.mp4
4.98MB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4
8.76MB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4
7.92MB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4
7.81MB
6. Monte Carlo/5. Monte Carlo Control.mp4
9.26MB
6. Monte Carlo/6. Monte Carlo Control in Code.mp4
10.17MB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4
4.63MB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4
8.06MB
6. Monte Carlo/9. Monte Carlo Summary.mp4
5.71MB
7. Temporal Difference Learning/1. Temporal Difference Intro.mp4
2.72MB
7. Temporal Difference Learning/2. TD(0) Prediction.mp4
5.82MB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4
5.32MB
7. Temporal Difference Learning/4. SARSA.mp4
8.21MB
7. Temporal Difference Learning/5. SARSA in Code.mp4
8.82MB
7. Temporal Difference Learning/6. Q Learning.mp4
4.85MB
7. Temporal Difference Learning/7. Q Learning in Code.mp4
5.42MB
7. Temporal Difference Learning/8. TD Summary.mp4
3.94MB
8. Approximation Methods/1. Approximation Intro.mp4
6.46MB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4
6.47MB
8. Approximation Methods/3. Features.mp4
6.25MB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4
2.85MB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4
6.57MB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4
8.35MB
8. Approximation Methods/7. Semi-Gradient SARSA.mp4
4.7MB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4
10.61MB
8. Approximation Methods/9. Course Summary and Next Steps.mp4
13.24MB
9. Appendix/1. What is the Appendix.mp4
5.45MB
9. Appendix/10. What order should I take your courses in (part 1).mp4
29.32MB
9. Appendix/11. What order should I take your courses in (part 2).mp4
37.62MB
9. Appendix/12. Where to get discount coupons and FREE deep learning material.mp4
4.03MB
9. Appendix/2. Windows-Focused Environment Setup 2018.mp4
186.38MB
9. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
43.92MB
9. Appendix/4. How to Code by Yourself (part 1).mp4
24.53MB
9. Appendix/5. How to Code by Yourself (part 2).mp4
14.81MB
9. Appendix/6. How to Succeed in this Course (Long Version).mp4
18.31MB
9. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
38.95MB
9. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4
78.33MB
9. Appendix/9. Python 2 vs Python 3.mp4
7.83MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统