首页 磁力链接怎么用

[FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-2-11 03:31 2025-1-6 21:06 138 1.36 GB 52
二维码链接
[FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction and Outline/1. Outline of this Course.mp44.93MB
  2. 1. Introduction and Outline/2. Review of Important Deep Learning Concepts.mp45.68MB
  3. 1. Introduction and Outline/3. Where to get the Code and Data.mp43.12MB
  4. 1. Introduction and Outline/4. How to Succeed in this Course.mp43.3MB
  5. 2. The Simple Recurrent Unit/1. Architecture of a Recurrent Unit.mp47.75MB
  6. 2. The Simple Recurrent Unit/2. Prediction and Relationship to Markov Models.mp48.97MB
  7. 2. The Simple Recurrent Unit/3. Unfolding a Recurrent Network.mp43.21MB
  8. 2. The Simple Recurrent Unit/4. Backpropagation Through Time (BPTT).mp47.15MB
  9. 2. The Simple Recurrent Unit/5. The Parity Problem - XOR on Steroids.mp47.79MB
  10. 2. The Simple Recurrent Unit/6. The Parity Problem in Code using a Feedforward ANN.mp438.33MB
  11. 2. The Simple Recurrent Unit/7. Theano Scan Tutorial.mp423.77MB
  12. 2. The Simple Recurrent Unit/8. The Parity Problem in Code using a Recurrent Neural Network.mp437.48MB
  13. 2. The Simple Recurrent Unit/9. On Adding Complexity.mp42.39MB
  14. 3. Recurrent Neural Networks for NLP/1. Word Embeddings and Recurrent Neural Networks.mp48.69MB
  15. 3. Recurrent Neural Networks for NLP/2. Word Analogies with Word Embeddings.mp44.18MB
  16. 3. Recurrent Neural Networks for NLP/3. Representing a sequence of words as a sequence of word embeddings.mp45.44MB
  17. 3. Recurrent Neural Networks for NLP/4. Generating Poetry.mp47.53MB
  18. 3. Recurrent Neural Networks for NLP/5. Generating Poetry in Code (part 1).mp452.43MB
  19. 3. Recurrent Neural Networks for NLP/6. Generating Poetry in Code (part 2).mp413.59MB
  20. 3. Recurrent Neural Networks for NLP/7. Classifying Poetry.mp46.28MB
  21. 3. Recurrent Neural Networks for NLP/8. Classifying Poetry in Code.mp445.87MB
  22. 4. Advanced RNN Units/1. Rated RNN Unit.mp46.05MB
  23. 4. Advanced RNN Units/10. Learning from Wikipedia Data in Code (part 2).mp425.61MB
  24. 4. Advanced RNN Units/11. Visualizing the Word Embeddings.mp423.49MB
  25. 4. Advanced RNN Units/2. RRNN in Code - Revisiting Poetry Generation.mp425.41MB
  26. 4. Advanced RNN Units/3. Gated Recurrent Unit (GRU).mp49.03MB
  27. 4. Advanced RNN Units/4. GRU in Code.mp415.07MB
  28. 4. Advanced RNN Units/5. Long Short-Term Memory (LSTM).mp47.62MB
  29. 4. Advanced RNN Units/6. LSTM in Code.mp419.39MB
  30. 4. Advanced RNN Units/7. Learning from Wikipedia Data.mp412.76MB
  31. 4. Advanced RNN Units/8. Alternative to Wikipedia Data Brown Corpus.mp412.49MB
  32. 4. Advanced RNN Units/9. Learning from Wikipedia Data in Code (part 1).mp448.69MB
  33. 5. Batch Training/1. Batch Training for Simple RNN.mp416.56MB
  34. 6. TensorFlow/1. Simple RNN in TensorFlow.mp412MB
  35. 7. Basics Review/1. (Review) Theano Basics.mp493.47MB
  36. 7. Basics Review/2. (Review) Theano Neural Network in Code.mp487.03MB
  37. 7. Basics Review/3. (Review) Tensorflow Basics.mp481.44MB
  38. 7. Basics Review/4. (Review) Tensorflow Neural Network in Code.mp497.34MB
  39. 8. Appendix/1. What is the Appendix.mp45.45MB
  40. 8. Appendix/10. BONUS Where to get Udemy coupons and FREE deep learning material.mp44.02MB
  41. 8. Appendix/11. Python 2 vs Python 3.mp47.83MB
  42. 8. Appendix/12. Is Theano Dead.mp417.82MB
  43. 8. Appendix/13. What order should I take your courses in (part 1).mp429.33MB
  44. 8. Appendix/14. What order should I take your courses in (part 2).mp437.62MB
  45. 8. Appendix/2. How to install wp2txt or WikiExtractor.py.mp43.77MB
  46. 8. Appendix/3. Windows-Focused Environment Setup 2018.mp4186.44MB
  47. 8. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  48. 8. Appendix/5. How to Code by Yourself (part 1).mp424.53MB
  49. 8. Appendix/6. How to Code by Yourself (part 2).mp414.81MB
  50. 8. Appendix/7. How to Succeed in this Course (Long Version).mp412.99MB
  51. 8. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.95MB
  52. 8. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp478.31MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统