首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[GigaCourse.Com] Udemy - Python for Machine Learning The Complete Beginner's Course
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2023-4-13 00:26
2024-12-26 01:15
172
684.84 MB
80
磁力链接
magnet:?xt=urn:btih:53d8351e5f14e26cf79e4c81c021dc0c662b9dd3
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjUzZDgzNTFlNWYxNGUyNmNmNzllNGM4MWMwMjFkYzBjNjYyYjlkZDNaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GigaCourse
Com
Udemy
-
Python
for
Machine
Learning
The
Complete
Beginner's
Course
文件列表
1. Introduction to Machine Learning/1. What is Machine Learning.mp4
7.48MB
1. Introduction to Machine Learning/2. Applications of Machine Learning.mp4
6.51MB
1. Introduction to Machine Learning/3. Machine learning Methods.mp4
3.7MB
1. Introduction to Machine Learning/4. What is Supervised learning.mp4
6.23MB
1. Introduction to Machine Learning/5. What is Unsupervised learning.mp4
5.95MB
1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.mp4
14.33MB
1. Introduction to Machine Learning/7.14 u.data
1.98MB
2. Simple Linear Regression/1. Introduction to regression.mp4
8.97MB
2. Simple Linear Regression/2. How Does Linear Regression Work.mp4
7.68MB
2. Simple Linear Regression/3. Line representation.mp4
5.45MB
2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.mp4
7.55MB
2. Simple Linear Regression/5. Implementation in python Distribution of the data.mp4
9.46MB
2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.mp4
13.22MB
3. Multiple Linear Regression/1. Understanding Multiple linear regression.mp4
6.32MB
3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.mp4
13.31MB
3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.mp4
28.92MB
3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
8.83MB
3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.mp4
8.62MB
3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.mp4
17.83MB
3. Multiple Linear Regression/7. Evaluating the performance of the regression model.mp4
6.01MB
3. Multiple Linear Regression/8. Root Mean Squared Error in Python.mp4
11.83MB
4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.mp4
4.67MB
4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.mp4
9.67MB
4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.mp4
6.05MB
4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.mp4
3.48MB
4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.mp4
6.14MB
4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.mp4
5.11MB
4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.mp4
9.29MB
4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.mp4
19.69MB
4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.mp4
5.73MB
4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.mp4
12.51MB
5. Classification Algorithms Decision Tree/1. Introduction to decision trees.mp4
6.49MB
5. Classification Algorithms Decision Tree/2. What is Entropy.mp4
5.23MB
5. Classification Algorithms Decision Tree/3. Exploring the dataset.mp4
5.96MB
5. Classification Algorithms Decision Tree/4. Decision tree structure.mp4
6.39MB
5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.mp4
4.65MB
5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.mp4
16.98MB
5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.mp4
4.92MB
5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.mp4
10.44MB
6. Classification Algorithms Logistic regression/1. Introduction.mp4
6.59MB
6. Classification Algorithms Logistic regression/2. Implementation steps.mp4
5.49MB
6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.mp4
6.82MB
6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
7.18MB
6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.mp4
13.17MB
6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.mp4
7.83MB
6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.mp4
13.46MB
6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.mp4
10.76MB
7. Clustering/1. Introduction to clustering.mp4
4.26MB
7. Clustering/10. Importing the dataset.mp4
12.78MB
7. Clustering/11. Visualizing the dataset.mp4
12.43MB
7. Clustering/12. Defining the classifier.mp4
7.66MB
7. Clustering/13. 3D Visualization of the clusters.mp4
7.82MB
7. Clustering/14. 3D Visualization of the predicted values.mp4
12.84MB
7. Clustering/15. Number of predicted clusters.mp4
9.49MB
7. Clustering/2. Use cases.mp4
4.05MB
7. Clustering/3. K-Means Clustering Algorithm.mp4
6.62MB
7. Clustering/4. Elbow method.mp4
7.02MB
7. Clustering/5. Steps of the Elbow method.mp4
5.84MB
7. Clustering/6. Implementation in python.mp4
19MB
7. Clustering/7. Hierarchical clustering.mp4
7.42MB
7. Clustering/8. Density-based clustering.mp4
7.79MB
7. Clustering/9. Implementation of k-means clustering in python.mp4
3.93MB
8. Recommender System/1. Introduction.mp4
7.54MB
8. Recommender System/10. Data pre-processing.mp4
10.76MB
8. Recommender System/11. Sorting the most-rated movies.mp4
8.88MB
8. Recommender System/12. Grabbing the ratings for two movies.mp4
5.47MB
8. Recommender System/13. Correlation between the most-rated movies.mp4
13.29MB
8. Recommender System/14. Sorting the data by correlation.mp4
6.14MB
8. Recommender System/15. Filtering out movies.mp4
4.79MB
8. Recommender System/16. Sorting values.mp4
6.84MB
8. Recommender System/17. Repeating the process for another movie.mp4
12.66MB
8. Recommender System/2. Collaborative Filtering in Recommender Systems.mp4
4.16MB
8. Recommender System/3. Content-based Recommender System.mp4
4.88MB
8. Recommender System/4. Implementation in python Importing libraries & datasets.mp4
10.26MB
8. Recommender System/5. Merging datasets into one dataframe.mp4
4.19MB
8. Recommender System/6. Sorting by title and rating.mp4
19.33MB
8. Recommender System/7. Histogram showing number of ratings.mp4
5.67MB
8. Recommender System/8. Frequency distribution.mp4
6.05MB
8. Recommender System/9. Jointplot of the ratings and number of ratings.mp4
7.28MB
9. Conclusion/1. Conclusion.mp4
2.8MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统