首页 磁力链接怎么用

[GigaCourse.com] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-11-26 19:43 2024-12-25 14:37 231 1.15 GB 57
二维码链接
[GigaCourse.com] Udemy - Unsupervised Machine Learning Hidden Markov Models in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction and Outline/1. Introduction and Outline Why would you want to use an HMM.mp46.78MB
  2. 1. Introduction and Outline/2. Unsupervised or Supervised.mp45.27MB
  3. 1. Introduction and Outline/3. Where to get the Code and Data.mp42.09MB
  4. 1. Introduction and Outline/4. How to Succeed in this Course.mp43.3MB
  5. 10. Appendix/1. What is the Appendix.mp45.45MB
  6. 10. Appendix/10. What order should I take your courses in (part 1).mp429.33MB
  7. 10. Appendix/11. What order should I take your courses in (part 2).mp437.63MB
  8. 10. Appendix/12. BONUS Where to get Udemy coupons and FREE deep learning material.mp44.03MB
  9. 10. Appendix/2. Windows-Focused Environment Setup 2018.mp4186.33MB
  10. 10. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  11. 10. Appendix/4. How to Code by Yourself (part 1).mp424.54MB
  12. 10. Appendix/5. How to Code by Yourself (part 2).mp414.81MB
  13. 10. Appendix/6. How to Succeed in this Course (Long Version).mp418.32MB
  14. 10. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  15. 10. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp478.28MB
  16. 10. Appendix/9. Python 2 vs Python 3.mp47.84MB
  17. 2. Markov Models/1. The Markov Property.mp48.31MB
  18. 2. Markov Models/2. Markov Models.mp48.17MB
  19. 2. Markov Models/3. The Math of Markov Chains.mp49.04MB
  20. 3. Markov Models Example Problems and Applications/1. Example Problem Sick or Healthy.mp45.54MB
  21. 3. Markov Models Example Problems and Applications/2. Example Problem Expected number of continuously sick days.mp44.63MB
  22. 3. Markov Models Example Problems and Applications/3. Example application SEO and Bounce Rate Optimization.mp415.83MB
  23. 3. Markov Models Example Problems and Applications/4. Example Application Build a 2nd-order language model and generate phrases.mp426.93MB
  24. 3. Markov Models Example Problems and Applications/5. Example Application Google’s PageRank algorithm.mp48.72MB
  25. 4. Hidden Markov Models for Discrete Observations/1. From Markov Models to Hidden Markov Models.mp410.17MB
  26. 4. Hidden Markov Models for Discrete Observations/10. Baum-Welch Updates for Multiple Observations.mp47.48MB
  27. 4. Hidden Markov Models for Discrete Observations/11. Discrete HMM in Code.mp447.43MB
  28. 4. Hidden Markov Models for Discrete Observations/12. The underflow problem and how to solve it.mp47.65MB
  29. 4. Hidden Markov Models for Discrete Observations/13. Discrete HMM Updates in Code with Scaling.mp429.14MB
  30. 4. Hidden Markov Models for Discrete Observations/14. Scaled Viterbi Algorithm in Log Space.mp49.23MB
  31. 4. Hidden Markov Models for Discrete Observations/2. HMMs are Doubly Embedded.mp41.54MB
  32. 4. Hidden Markov Models for Discrete Observations/3. How can we choose the number of hidden states.mp47.35MB
  33. 4. Hidden Markov Models for Discrete Observations/4. The Forward-Backward Algorithm.mp422.44MB
  34. 4. Hidden Markov Models for Discrete Observations/5. Visual Intuition for the Forward Algorithm.mp46.03MB
  35. 4. Hidden Markov Models for Discrete Observations/6. The Viterbi Algorithm.mp45.04MB
  36. 4. Hidden Markov Models for Discrete Observations/7. Visual Intuition for the Viterbi Algorithm.mp415.68MB
  37. 4. Hidden Markov Models for Discrete Observations/8. The Baum-Welch Algorithm.mp44.35MB
  38. 4. Hidden Markov Models for Discrete Observations/9. Baum-Welch Explanation and Intuition.mp411.97MB
  39. 5. Discrete HMMs Using Deep Learning Libraries/1. Gradient Descent Tutorial.mp422.81MB
  40. 5. Discrete HMMs Using Deep Learning Libraries/2. Theano Scan Tutorial.mp423.76MB
  41. 5. Discrete HMMs Using Deep Learning Libraries/3. Discrete HMM in Theano.mp430.74MB
  42. 5. Discrete HMMs Using Deep Learning Libraries/4. Improving our Gradient Descent-Based HMM.mp425.95MB
  43. 5. Discrete HMMs Using Deep Learning Libraries/5. Tensorflow Scan Tutorial.mp423.07MB
  44. 5. Discrete HMMs Using Deep Learning Libraries/6. Discrete HMM in Tensorflow.mp416.44MB
  45. 6. HMMs for Continuous Observations/1. Gaussian Mixture Models with Hidden Markov Models.mp416.46MB
  46. 6. HMMs for Continuous Observations/2. Generating Data from a Real-Valued HMM.mp414.95MB
  47. 6. HMMs for Continuous Observations/3. Continuous-Observation HMM in Code (part 1).mp446.69MB
  48. 6. HMMs for Continuous Observations/4. Continuous-Observation HMM in Code (part 2).mp415.29MB
  49. 6. HMMs for Continuous Observations/5. Continuous HMM in Theano.mp445.41MB
  50. 6. HMMs for Continuous Observations/6. Continuous HMM in Tensorflow.mp422.46MB
  51. 7. HMMs for Classification/1. Generative vs. Discriminative Classifiers.mp44.12MB
  52. 7. HMMs for Classification/2. HMM Classification on Poetry Data (Robert Frost vs. Edgar Allan Poe).mp424.39MB
  53. 8. Bonus Example Parts-of-Speech Tagging/1. Parts-of-Speech Tagging Concepts.mp48.51MB
  54. 8. Bonus Example Parts-of-Speech Tagging/2. POS Tagging with an HMM.mp414.39MB
  55. 9. Basics Review/1. (Review) Gaussian Mixture Models.mp44.99MB
  56. 9. Basics Review/2. (Review) Theano Tutorial.mp419.86MB
  57. 9. Basics Review/3. (Review) Tensorflow Tutorial.mp413.89MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统