首页 磁力链接怎么用

Learning Deep Learning From Perceptron to Large Language Models

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2024-3-2 22:15 2025-1-27 23:48 139 2.76 GB 110
二维码链接
Learning Deep Learning From Perceptron to Large Language Models的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/003. 7.2 Programming Example Neural Machine Translation with TensorFlow.mp4108.81MB
  2. Lesson 1 Deep Learning Introduction/001. Topics.mp41.17MB
  3. Lesson 1 Deep Learning Introduction/002. 1.1 Deep Learning and Its History.mp417.56MB
  4. Lesson 1 Deep Learning Introduction/003. 1.2 Prerequisites.mp415.83MB
  5. Lesson 2 Neural Network Fundamentals I/001. Topics.mp46.05MB
  6. Lesson 2 Neural Network Fundamentals I/002. 2.1 The Perceptron and Its Learning Algorithm.mp429.72MB
  7. Lesson 2 Neural Network Fundamentals I/003. 2.2 Programming Example Perceptron.mp427.52MB
  8. Lesson 2 Neural Network Fundamentals I/004. 2.3 Understanding the Bias Term.mp46.59MB
  9. Lesson 2 Neural Network Fundamentals I/005. 2.4 Matrix and Vector Notation for Neural Networks.mp420.72MB
  10. Lesson 2 Neural Network Fundamentals I/006. 2.5 Perceptron Limitations.mp427.67MB
  11. Lesson 2 Neural Network Fundamentals I/007. 2.6 Solving Learning Problem with Gradient Descent.mp435.66MB
  12. Lesson 2 Neural Network Fundamentals I/008. 2.7 Computing Gradient with the Chain Rule.mp441.79MB
  13. Lesson 2 Neural Network Fundamentals I/009. 2.8 The Backpropagation Algorithm.mp421.41MB
  14. Lesson 2 Neural Network Fundamentals I/010. 2.9 Programming Example Learning the XOR Function.mp459.64MB
  15. Lesson 2 Neural Network Fundamentals I/011. 2.10 What Activation Function to Use.mp46.65MB
  16. Lesson 2 Neural Network Fundamentals I/012. 2.11 Lesson 2 Summary.mp48.81MB
  17. Lesson 3 Neural Network Fundamentals II/001. Topics.mp47.04MB
  18. Lesson 3 Neural Network Fundamentals II/002. 3.1 Datasets and Generalization.mp425.28MB
  19. Lesson 3 Neural Network Fundamentals II/003. 3.2 Multiclass Classification.mp417.87MB
  20. Lesson 3 Neural Network Fundamentals II/004. 3.3 Programming Example Digit Classification with Python.mp473.67MB
  21. Lesson 3 Neural Network Fundamentals II/005. 3.4 DL Frameworks.mp45MB
  22. Lesson 3 Neural Network Fundamentals II/006. 3.5 Programming Example Digit Classification with TensorFlow.mp425.37MB
  23. Lesson 3 Neural Network Fundamentals II/007. 3.6 Programming Example Digit Classification with PyTorch.mp449.69MB
  24. Lesson 3 Neural Network Fundamentals II/008. 3.7 Avoiding Saturating Neurons and Vanishing Gradients—Part I.mp426.06MB
  25. Lesson 3 Neural Network Fundamentals II/009. 3.8 Avoiding Saturating Neurons and Vanishing Gradients—Part II.mp434.03MB
  26. Lesson 3 Neural Network Fundamentals II/010. 3.9 Variations on Gradient Descent.mp411.74MB
  27. Lesson 3 Neural Network Fundamentals II/011. 3.10 Programming Example Improved Digit Classification with TensorFlow.mp411.67MB
  28. Lesson 3 Neural Network Fundamentals II/012. 3.11 Programming Example Improved Digit Classification with PyTorch.mp422.91MB
  29. Lesson 3 Neural Network Fundamentals II/013. 3.12 Problem Types, Output Units, and Loss Functions.mp420.13MB
  30. Lesson 3 Neural Network Fundamentals II/014. 3.13 Regularization Techniques.mp49.13MB
  31. Lesson 3 Neural Network Fundamentals II/015. 3.14 Programming Example Regression Problem with TensorFlow.mp436.16MB
  32. Lesson 3 Neural Network Fundamentals II/016. 3.15 Programming Example Regression Problem with PyTorch.mp445.08MB
  33. Lesson 3 Neural Network Fundamentals II/017. 3.16 Lesson 3 Summary.mp49.52MB
  34. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/001. Topics.mp44.77MB
  35. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/002. 4.1 The CIFAR-10 Dataset.mp413.91MB
  36. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/003. 4.2 Convolutional Layer.mp425.5MB
  37. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/004. 4.3 Building a Convolutional Neural Network.mp443.65MB
  38. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/005. 4.4 Programming Example Image Classification Using CNN with TensorFlow.mp438.52MB
  39. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/006. 4.5 Programming Example Image Classification Using CNN with PyTorch.mp440.05MB
  40. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/007. 4.6 AlexNet.mp415.18MB
  41. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/008. 4.7 VGGNet.mp417.89MB
  42. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/009. 4.8 GoogLeNet.mp416.62MB
  43. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/010. 4.9 ResNet.mp419.35MB
  44. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/011. 4.10 Programming Example Using a Pretrained Network with TensorFlow.mp417.04MB
  45. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/012. 4.11 Programming Example Using a Pretrained Network with PyTorch.mp419.7MB
  46. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/013. 4.12 Transfer Learning.mp411.6MB
  47. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/014. 4.13 Efficient CNNs.mp411.5MB
  48. Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/015. 4.14 Lesson 4 Summary.mp47.53MB
  49. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/001. Topics.mp44.97MB
  50. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/002. 5.1 Problem Types Involving Sequential Data.mp419.68MB
  51. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/003. 5.2 Recurrent Neural Networks.mp425.12MB
  52. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/004. 5.3 Programming Example Forecasting Book Sales with TensorFlow.mp440.61MB
  53. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/005. 5.4 Programming Example Forecasting Book Sales with PyTorch.mp445.53MB
  54. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/006. 5.5 Backpropagation Through Time and Keeping Gradients Healthy.mp424.75MB
  55. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/007. 5.6 Long Short-Term Memory.mp427.94MB
  56. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/008. 5.7 Autoregression and Beam Search.mp418.49MB
  57. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/009. 5.8 Programming Example Text Autocompletion with TensorFlow.mp460.08MB
  58. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/010. 5.9 Programming Example Text Autocompletion with PyTorch.mp464.76MB
  59. Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/011. 5.10 Lesson 5 Summary.mp45.69MB
  60. Lesson 6 Neural Language Models and Word Embeddings/001. Topics.mp44.1MB
  61. Lesson 6 Neural Language Models and Word Embeddings/002. 6.1 Language Models.mp436.29MB
  62. Lesson 6 Neural Language Models and Word Embeddings/003. 6.2 Word Embeddings.mp435.93MB
  63. Lesson 6 Neural Language Models and Word Embeddings/004. 6.3 Programming Example Language Model and Word Embeddings with TensorFlow.mp454.37MB
  64. Lesson 6 Neural Language Models and Word Embeddings/005. 6.4 Programming Example Language Model and Word Embeddings with PyTorch.mp446.08MB
  65. Lesson 6 Neural Language Models and Word Embeddings/006. 6.5 Word2vec.mp419.05MB
  66. Lesson 6 Neural Language Models and Word Embeddings/007. 6.6 Programming Example Using Pretrained GloVe Embeddings.mp425.15MB
  67. Lesson 6 Neural Language Models and Word Embeddings/008. 6.7 Handling Out-of-Vocabulary Words with Wordpieces.mp49.61MB
  68. Lesson 6 Neural Language Models and Word Embeddings/009. 6.8 Lesson 6 Summary.mp44.84MB
  69. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/001. Topics.mp44.13MB
  70. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/002. 7.1 Encoder–Decoder Network for Neural Machine Translation.mp412.68MB
  71. Introduction/001. Learning Deep Learning Introduction.mp411.34MB
  72. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/004. 7.3 Programming Example Neural Machine Translation with PyTorch.mp499.88MB
  73. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/005. 7.4 Attention.mp425.09MB
  74. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/006. 7.5 The Transformer.mp426.04MB
  75. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/007. 7.6 Programming Example Machine Translation Using Transformer with Te.mp436.09MB
  76. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/008. 7.7 Programming Example Machine Translation Using Transformer with Py.mp440.98MB
  77. Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/009. 7.8 Lesson 7 Summary.mp44.58MB
  78. Lesson 8 Large Language Models/001. Topics.mp44.22MB
  79. Lesson 8 Large Language Models/002. 8.1 Overview of BERT.mp427.97MB
  80. Lesson 8 Large Language Models/003. 8.2 Overview of GPT.mp420.27MB
  81. Lesson 8 Large Language Models/004. 8.3 From GPT to GPT4.mp452.16MB
  82. Lesson 8 Large Language Models/005. 8.4 Handling Chat History.mp416.32MB
  83. Lesson 8 Large Language Models/006. 8.5 Prompt Tuning.mp425.07MB
  84. Lesson 8 Large Language Models/007. 8.6 Retrieving Data and Using Tools.mp426.41MB
  85. Lesson 8 Large Language Models/008. 8.7 Open Datasets and Models.mp415.61MB
  86. Lesson 8 Large Language Models/009. 8.8 Demo Large Language Model Prompting.mp425.74MB
  87. Lesson 8 Large Language Models/010. 8.9 Lesson 8 Summary.mp44.07MB
  88. Lesson 9 Multi-Modal Networks and Image Captioning/001. Topics.mp43.83MB
  89. Lesson 9 Multi-Modal Networks and Image Captioning/002. 9.1 Multimodal learning.mp422.61MB
  90. Lesson 9 Multi-Modal Networks and Image Captioning/003. 9.2 Programming Example Multimodal Classification with TensorFlow.mp434.45MB
  91. Lesson 9 Multi-Modal Networks and Image Captioning/004. 9.3 Programming Example Multimodal Classification with PyTorch.mp433.73MB
  92. Lesson 9 Multi-Modal Networks and Image Captioning/005. 9.4 Image Captioning with Attention.mp417.89MB
  93. Lesson 9 Multi-Modal Networks and Image Captioning/006. 9.5 Programming Example Image Captioning with TensorFlow.mp481.18MB
  94. Lesson 9 Multi-Modal Networks and Image Captioning/007. 9.6 Programming Example Image Captioning with PyTorch.mp482.29MB
  95. Lesson 9 Multi-Modal Networks and Image Captioning/008. 9.7 Multimodal Large Language Models.mp460.21MB
  96. Lesson 9 Multi-Modal Networks and Image Captioning/009. 9.8 Lesson 9 Summary.mp44.23MB
  97. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/001. Topics.mp44.44MB
  98. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/002. 10.1 Multitask Learning.mp417.4MB
  99. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/003. 10.2 Programming Example Multitask Learning with TensorFlow.mp422.4MB
  100. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/004. 10.3 Programming Example Multitask Learning with PyTorch.mp430.05MB
  101. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/005. 10.4 Object Detection with R-CNN.mp420.46MB
  102. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/006. 10.5 Improved Object Detection with Fast and Faster R-CNN.mp414.62MB
  103. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/007. 10.6 Segmentation with Deconvolution Network and U-Net.mp424.82MB
  104. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/008. 10.7 Instance Segmentation with Mask R-CNN.mp49.55MB
  105. Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/009. 10.8 Lesson 10 Summary.mp44.39MB
  106. Lesson 11 Applying Deep Learning/001. Topics.mp42.66MB
  107. Lesson 11 Applying Deep Learning/002. 11.1 Ethical AI and Data Ethics.mp452.92MB
  108. Lesson 11 Applying Deep Learning/003. 11.2 Process for Tuning a Network.mp416.32MB
  109. Lesson 11 Applying Deep Learning/004. 11.3 Further Studies.mp411.98MB
  110. Summary/001. Learning Deep Learning Summary.mp433.36MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统