首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeCourseSite.com] Udemy - Complete Data Science & Machine Learning A-Z with Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2023-7-10 05:15
2025-1-11 03:13
287
10.57 GB
242
磁力链接
magnet:?xt=urn:btih:995e52c707e965713e15f8be5a94177580e2717e
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjk5NWU1MmM3MDdlOTY1NzEzZTE1ZjhiZTVhOTQxNzc1ODBlMjcxN2VaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeCourseSite
com
Udemy
-
Complete
Data
Science
&
Machine
Learning
A-Z
with
Python
文件列表
1. Installations/1. Installing Anaconda Distribution for Windows.mp4
118.32MB
1. Installations/3. Installing Anaconda Distribution for MacOs.mp4
46.31MB
1. Installations/5. Installing Anaconda Distribution for Linux.mp4
114.75MB
10. Element Selection Operations in DataFrame Structures/1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4
29.9MB
10. Element Selection Operations in DataFrame Structures/2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4
31.84MB
10. Element Selection Operations in DataFrame Structures/3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4
38.29MB
10. Element Selection Operations in DataFrame Structures/4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4
31.41MB
10. Element Selection Operations in DataFrame Structures/5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4
22.11MB
10. Element Selection Operations in DataFrame Structures/6. Element Selection with Conditional Operations in.mp4
46.37MB
11. Structural Operations on Pandas DataFrame/1. Adding Columns to Pandas Data Frames.mp4
33.58MB
11. Structural Operations on Pandas DataFrame/2. Removing Rows and Columns from Pandas Data frames.mp4
15.56MB
11. Structural Operations on Pandas DataFrame/3. Null Values in Pandas Dataframes.mp4
66.96MB
11. Structural Operations on Pandas DataFrame/4. Dropping Null Values Dropna() Function.mp4
34.54MB
11. Structural Operations on Pandas DataFrame/5. Filling Null Values Fillna() Function.mp4
51.62MB
11. Structural Operations on Pandas DataFrame/6. Setting Index in Pandas DataFrames.mp4
39.7MB
12. Multi-Indexed DataFrame Structures/1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4
42.66MB
12. Multi-Indexed DataFrame Structures/2. Element Selection in Multi-Indexed DataFrames.mp4
24.58MB
12. Multi-Indexed DataFrame Structures/3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4
31.25MB
13. Structural Concatenation Operations in Pandas DataFrame/1. Concatenating Pandas Dataframes Concat Function.mp4
63.84MB
13. Structural Concatenation Operations in Pandas DataFrame/2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4
57.29MB
13. Structural Concatenation Operations in Pandas DataFrame/3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4
30.55MB
13. Structural Concatenation Operations in Pandas DataFrame/4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4
60.17MB
13. Structural Concatenation Operations in Pandas DataFrame/5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4
40.68MB
13. Structural Concatenation Operations in Pandas DataFrame/6. Joining Pandas Dataframes Join() Function.mp4
56.05MB
14. Functions That Can Be Applied on a DataFrame/1. Loading a Dataset from the Seaborn Library.mp4
37.72MB
14. Functions That Can Be Applied on a DataFrame/2. Examining the Data Set 1.mp4
42.9MB
14. Functions That Can Be Applied on a DataFrame/3. Aggregation Functions in Pandas DataFrames.mp4
90.69MB
14. Functions That Can Be Applied on a DataFrame/4. Examining the Data Set 2.mp4
46.58MB
14. Functions That Can Be Applied on a DataFrame/5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4
88.12MB
14. Functions That Can Be Applied on a DataFrame/6. Advanced Aggregation Functions Aggregate() Function.mp4
29.22MB
14. Functions That Can Be Applied on a DataFrame/7. Advanced Aggregation Functions Filter() Function.mp4
24.45MB
14. Functions That Can Be Applied on a DataFrame/8. Advanced Aggregation Functions Transform() Function.mp4
47.09MB
14. Functions That Can Be Applied on a DataFrame/9. Advanced Aggregation Functions Apply() Function.mp4
41.42MB
15. Pivot Tables in Pandas Library/1. Examining the Data Set 3.mp4
39.11MB
15. Pivot Tables in Pandas Library/2. Pivot Tables in Pandas Library.mp4
54.23MB
16. File Operations in Pandas Library/1. Accessing and Making Files Available.mp4
34.61MB
16. File Operations in Pandas Library/2. Data Entry with Csv and Txt Files.mp4
64.34MB
16. File Operations in Pandas Library/3. Data Entry with Excel Files.mp4
21.84MB
16. File Operations in Pandas Library/4. Outputting as an CSV Extension.mp4
35.7MB
16. File Operations in Pandas Library/5. Outputting as an Excel File.mp4
19.74MB
18. Introduction to Data Visualization with Python/1. Introduction to Data Visualization with Python.mp4
12.85MB
19. Fundamentals of Python 3/1. Data Types in Python.mp4
47.07MB
19. Fundamentals of Python 3/10. Exercise - Solution in Python.mp4
51.89MB
19. Fundamentals of Python 3/2. Operators in Python.mp4
35.71MB
19. Fundamentals of Python 3/3. Conditionals in Python.mp4
41.23MB
19. Fundamentals of Python 3/4. Loops in Python.mp4
58.81MB
19. Fundamentals of Python 3/5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4
75.33MB
19. Fundamentals of Python 3/6. Data Type Operators and Methods in Python.mp4
43.86MB
19. Fundamentals of Python 3/7. Modules in Python.mp4
23.95MB
19. Fundamentals of Python 3/8. Functions in Python.mp4
28.93MB
19. Fundamentals of Python 3/9. Exercise - Analyse in Python.mp4
8.46MB
2. NumPy Library Introduction/1. Introduction to NumPy Library.mp4
45.27MB
2. NumPy Library Introduction/2. The Power of NumPy.mp4
59.87MB
20. Object Oriented Programming (OOP)/1. Logic of Object Oriented Programming.mp4
17.38MB
20. Object Oriented Programming (OOP)/2. Constructor in Object Oriented Programming (OOP).mp4
35.84MB
20. Object Oriented Programming (OOP)/3. Methods in Object Oriented Programming (OOP).mp4
25.1MB
20. Object Oriented Programming (OOP)/4. Inheritance in Object Oriented Programming (OOP).mp4
34.58MB
20. Object Oriented Programming (OOP)/5. Overriding and Overloading in Object Oriented Programming (OOP).mp4
62.7MB
21. Matplotlib/1. What is Matplotlib.mp4
19.06MB
21. Matplotlib/2. Using Pyplot.mp4
28.22MB
21. Matplotlib/3. Pyplot – Pylab - Matplotlib.mp4
28.37MB
21. Matplotlib/4. Figure, Subplot and Axex.mp4
69.89MB
21. Matplotlib/5. Figure Customization.mp4
63.29MB
21. Matplotlib/6. Plot Customization.mp4
27.38MB
21. Matplotlib/7. Grid, Spines, Ticks.mp4
23.89MB
21. Matplotlib/8. Basic Plots in Matplotlib I.mp4
111.17MB
21. Matplotlib/9. Basic Plots in Matplotlib II.mp4
54.82MB
22. Seaborn/1. What is Seaborn.mp4
13.59MB
22. Seaborn/2. Controlling Figure Aesthetics in Seaborn.mp4
41.82MB
22. Seaborn/3. Example in Seaborn.mp4
54.9MB
22. Seaborn/4. Color Palettes in Seaborn.mp4
48.32MB
22. Seaborn/5. Basic Plots in Seaborn.mp4
98.84MB
22. Seaborn/6. Multi-Plots in Seaborn.mp4
42.98MB
22. Seaborn/7. Regression Plots and Squarify in Seaborn.mp4
60.1MB
23. Geoplotlib/1. What is Geoplotlib.mp4
34.18MB
23. Geoplotlib/2. Example - 1.mp4
38.85MB
23. Geoplotlib/3. Example - 2.mp4
81.14MB
23. Geoplotlib/4. Example - 3.mp4
51.28MB
24. First Contact with Machine Learning/1. What is Machine Learning.mp4
27.58MB
24. First Contact with Machine Learning/2. Machine Learning Terminology.mp4
14.03MB
25. Evaluation Metrics in Machine Learning/1. Classification vs Regression in Machine Learning.mp4
19.89MB
25. Evaluation Metrics in Machine Learning/2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4
100.26MB
25. Evaluation Metrics in Machine Learning/3. Evaluating Performance Regression Error Metrics in Python.mp4
45.7MB
25. Evaluation Metrics in Machine Learning/4. Machine Learning With Python.mp4
92.24MB
26. Supervised Learning with Machine Learning/1. What is Supervised Learning in Machine Learning.mp4
31.69MB
27. Linear Regression Algorithm in Machine Learning A-Z/1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4
34.06MB
27. Linear Regression Algorithm in Machine Learning A-Z/2. Linear Regression Algorithm With Python Part 1.mp4
76.17MB
27. Linear Regression Algorithm in Machine Learning A-Z/3. Linear Regression Algorithm With Python Part 2.mp4
106.94MB
27. Linear Regression Algorithm in Machine Learning A-Z/4. Linear Regression Algorithm With Python Part 3.mp4
70.28MB
27. Linear Regression Algorithm in Machine Learning A-Z/5. Linear Regression Algorithm With Python Part 4.mp4
90MB
28. Bias Variance Trade-Off in Machine Learning/1. What is Bias Variance Trade-Off.mp4
55.03MB
29. Logistic Regression Algorithm in Machine Learning A-Z/1. What is Logistic Regression Algorithm in Machine Learning.mp4
27.84MB
29. Logistic Regression Algorithm in Machine Learning A-Z/2. Logistic Regression Algorithm with Python Part 1.mp4
72.22MB
29. Logistic Regression Algorithm in Machine Learning A-Z/3. Logistic Regression Algorithm with Python Part 2.mp4
81.46MB
29. Logistic Regression Algorithm in Machine Learning A-Z/4. Logistic Regression Algorithm with Python Part 3.mp4
47.35MB
29. Logistic Regression Algorithm in Machine Learning A-Z/5. Logistic Regression Algorithm with Python Part 4.mp4
47.17MB
29. Logistic Regression Algorithm in Machine Learning A-Z/6. Logistic Regression Algorithm with Python Part 5.mp4
39.35MB
3. Creating NumPy Array in Python/1. Creating NumPy Array with The Array() Function.mp4
29.5MB
3. Creating NumPy Array in Python/2. Creating NumPy Array with Zeros() Function.mp4
24.06MB
3. Creating NumPy Array in Python/3. Creating NumPy Array with Ones() Function.mp4
15.88MB
3. Creating NumPy Array in Python/4. Creating NumPy Array with Full() Function.mp4
11.18MB
3. Creating NumPy Array in Python/5. Creating NumPy Array with Arange() Function.mp4
12.1MB
3. Creating NumPy Array in Python/6. Creating NumPy Array with Eye() Function.mp4
12.55MB
3. Creating NumPy Array in Python/7. Creating NumPy Array with Linspace() Function.mp4
7.34MB
3. Creating NumPy Array in Python/8. Creating NumPy Array with Random() Function.mp4
43.3MB
3. Creating NumPy Array in Python/9. Properties of NumPy Array.mp4
21.98MB
30. K-fold Cross-Validation in Machine Learning A-Z/1. K-Fold Cross-Validation Theory.mp4
17.45MB
30. K-fold Cross-Validation in Machine Learning A-Z/2. K-Fold Cross-Validation with Python.mp4
34.67MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/1. K Nearest Neighbors Algorithm Theory.mp4
28.66MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/2. K Nearest Neighbors Algorithm with Python Part 1.mp4
35.03MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/3. K Nearest Neighbors Algorithm with Python Part 2.mp4
59.37MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/4. K Nearest Neighbors Algorithm with Python Part 3.mp4
31.4MB
32. Hyperparameter Optimization/1. Hyperparameter Optimization Theory.mp4
33.14MB
32. Hyperparameter Optimization/2. Hyperparameter Optimization with Python.mp4
47.47MB
33. Decision Tree Algorithm in Machine Learning A-Z/1. Decision Tree Algorithm Theory.mp4
35.75MB
33. Decision Tree Algorithm in Machine Learning A-Z/2. Decision Tree Algorithm with Python Part 1.mp4
31.53MB
33. Decision Tree Algorithm in Machine Learning A-Z/3. Decision Tree Algorithm with Python Part 2.mp4
48.92MB
33. Decision Tree Algorithm in Machine Learning A-Z/4. Decision Tree Algorithm with Python Part 3.mp4
14.72MB
33. Decision Tree Algorithm in Machine Learning A-Z/5. Decision Tree Algorithm with Python Part 4.mp4
42.49MB
33. Decision Tree Algorithm in Machine Learning A-Z/6. Decision Tree Algorithm with Python Part 5.mp4
32.67MB
34. Random Forest Algorithm in Machine Learning A-Z/1. Random Forest Algorithm Theory.mp4
22.89MB
34. Random Forest Algorithm in Machine Learning A-Z/2. Random Forest Algorithm with Pyhon Part 1.mp4
38.61MB
34. Random Forest Algorithm in Machine Learning A-Z/3. Random Forest Algorithm with Pyhon Part 2.mp4
38.72MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/1. Support Vector Machine Algorithm Theory.mp4
21.84MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/2. Support Vector Machine Algorithm with Python Part 1.mp4
35.59MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/3. Support Vector Machine Algorithm with Python Part 2.mp4
41.72MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/4. Support Vector Machine Algorithm with Python Part 3.mp4
34.77MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/5. Support Vector Machine Algorithm with Python Part 4.mp4
37.55MB
36. Unsupervised Learning with Machine Learning/1. Unsupervised Learning Overview.mp4
16.91MB
37. K Means Clustering Algorithm in Machine Learning A-Z/1. K Means Clustering Algorithm Theory.mp4
17.13MB
37. K Means Clustering Algorithm in Machine Learning A-Z/2. K Means Clustering Algorithm with Python Part 1.mp4
29.96MB
37. K Means Clustering Algorithm in Machine Learning A-Z/3. K Means Clustering Algorithm with Python Part 2.mp4
29.64MB
37. K Means Clustering Algorithm in Machine Learning A-Z/4. K Means Clustering Algorithm with Python Part 3.mp4
27.75MB
37. K Means Clustering Algorithm in Machine Learning A-Z/5. K Means Clustering Algorithm with Python Part 4.mp4
29.03MB
38. Hierarchical Clustering Algorithm in machine learning data science/1. Hierarchical Clustering Algorithm Theory.mp4
28.55MB
38. Hierarchical Clustering Algorithm in machine learning data science/2. Hierarchical Clustering Algorithm with Python Part 2.mp4
35.52MB
38. Hierarchical Clustering Algorithm in machine learning data science/3. Hierarchical Clustering Algorithm with Python Part 2.mp4
28.89MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/1. Principal Component Analysis (PCA) Theory.mp4
37.96MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/2. Principal Component Analysis (PCA) with Python Part 1.mp4
26.02MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/3. Principal Component Analysis (PCA) with Python Part 2.mp4
8.42MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/4. Principal Component Analysis (PCA) with Python Part 3.mp4
37.25MB
4. Functions in the NumPy Library/1. Reshaping a NumPy Array Reshape() Function.mp4
26.16MB
4. Functions in the NumPy Library/2. Identifying the Largest Element of a Numpy Array.mp4
15.12MB
4. Functions in the NumPy Library/3. Detecting Least Element of Numpy Array Min(), Ar.mp4
10.17MB
4. Functions in the NumPy Library/4. Concatenating Numpy Arrays Concatenate() Functio.mp4
38.36MB
4. Functions in the NumPy Library/5. Splitting One-Dimensional Numpy Arrays The Split.mp4
20.9MB
4. Functions in the NumPy Library/6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4
35.73MB
4. Functions in the NumPy Library/7. Sorting Numpy Arrays Sort() Function.mp4
17.02MB
40. Recommender System Algorithm in Machine Learning A-Z/1. What is the Recommender System Part 1.mp4
23.04MB
40. Recommender System Algorithm in Machine Learning A-Z/2. What is the Recommender System Part 2.mp4
17.96MB
41. First Contact with Kaggle/1. What is Kaggle.mp4
129.67MB
41. First Contact with Kaggle/3. Registering on Kaggle and Member Login Procedures.mp4
43.48MB
41. First Contact with Kaggle/5. Getting to Know the Kaggle Homepage.mp4
122.93MB
42. Competition Section on Kaggle/1. Competitions on Kaggle Lesson 1.mp4
188.17MB
42. Competition Section on Kaggle/2. Competitions on Kaggle Lesson 2.mp4
191.68MB
43. Dataset Section on Kaggle/1. Datasets on Kaggle.mp4
133.23MB
44. Code Section on Kaggle/1. Examining the Code Section in Kaggle Lesson 1.mp4
79.53MB
44. Code Section on Kaggle/2. Examining the Code Section in Kaggle Lesson 2.mp4
105.81MB
44. Code Section on Kaggle/3. Examining the Code Section in Kaggle Lesson 3.mp4
159.89MB
45. Discussion Section on Kaggle/1. What is Discussion on Kaggle.mp4
40.63MB
46. Other Most Used Options on Kaggle/1. Courses in Kaggle.mp4
52.14MB
46. Other Most Used Options on Kaggle/2. Ranking Among Users on Kaggle.mp4
107.04MB
46. Other Most Used Options on Kaggle/3. Blog and Documentation Sections.mp4
40.85MB
47. Details on Kaggle/1. User Page Review on Kaggle.mp4
81.5MB
47. Details on Kaggle/2. Treasure in The Kaggle.mp4
74.64MB
47. Details on Kaggle/3. Publishing Notebooks on Kaggle.mp4
38.2MB
47. Details on Kaggle/4. What Should Be Done to Achieve Success in Kaggle.mp4
58.48MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.mp4
117.14MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.mp4
104.93MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.mp4
76.51MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.mp4
126.87MB
49. First Organization/1. Required Python Libraries.mp4
63.55MB
49. First Organization/2. Loading the Statistics Dataset in Data Science.mp4
10MB
49. First Organization/3. Initial analysis on the dataset.mp4
63.96MB
5. Indexing, Slicing, and Assigning NumPy Arrays/1. Indexing Numpy Arrays,.mp4
26.56MB
5. Indexing, Slicing, and Assigning NumPy Arrays/2. Slicing One-Dimensional Numpy Arrays.mp4
22.27MB
5. Indexing, Slicing, and Assigning NumPy Arrays/3. Slicing Two-Dimensional Numpy Arrays.mp4
34.27MB
5. Indexing, Slicing, and Assigning NumPy Arrays/4. Assigning Value to One-Dimensional Arrays.mp4
18.2MB
5. Indexing, Slicing, and Assigning NumPy Arrays/5. Assigning Value to Two-Dimensional Array.mp4
35.4MB
5. Indexing, Slicing, and Assigning NumPy Arrays/6. Fancy Indexing of One-Dimensional Arrrays.mp4
20.49MB
5. Indexing, Slicing, and Assigning NumPy Arrays/7. Fancy Indexing of Two-Dimensional Arrrays.mp4
45.75MB
5. Indexing, Slicing, and Assigning NumPy Arrays/8. Combining Fancy Index with Normal Indexing.mp4
12.65MB
5. Indexing, Slicing, and Assigning NumPy Arrays/9. Combining Fancy Index with Normal Slicing.mp4
16.46MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/1. Examining Missing Values.mp4
45.79MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/2. Examining Unique Values.mp4
44.54MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/3. Separating variables (Numeric or Categorical).mp4
15.81MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.mp4
91.37MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4
80.35MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4
19.75MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4
74.74MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4
84.06MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/5. Examining the Missing Data According to the Analysis Result.mp4
53.78MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4
49.37MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4
68.08MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4
38.07MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4
35.47MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4
36.36MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4
90.67MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4
35.64MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4
24.15MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4
56.27MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4
28.31MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4
47.14MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/7. Feature Scaling with the Robust Scaler Method.mp4
35.2MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/8. Creating a New DataFrame with the Melt() Function.mp4
52.89MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4
41.72MB
53. Preparation for Modelling in Machine Learning/1. Dropping Columns with Low Correlation.mp4
26.83MB
53. Preparation for Modelling in Machine Learning/10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4
11.45MB
53. Preparation for Modelling in Machine Learning/11. Separating Data into Test and Training Set.mp4
29.75MB
53. Preparation for Modelling in Machine Learning/2. Visualizing Outliers.mp4
34.89MB
53. Preparation for Modelling in Machine Learning/3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4
42.82MB
53. Preparation for Modelling in Machine Learning/4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4
43.91MB
53. Preparation for Modelling in Machine Learning/5. Dealing with Outliers – Thalach Variable.mp4
36.24MB
53. Preparation for Modelling in Machine Learning/6. Dealing with Outliers – Oldpeak Variable.mp4
36.06MB
53. Preparation for Modelling in Machine Learning/7. Determining Distributions of Numeric Variables.mp4
25.17MB
53. Preparation for Modelling in Machine Learning/8. Transformation Operations on Unsymmetrical Data.mp4
24.01MB
53. Preparation for Modelling in Machine Learning/9. Applying One Hot Encoding Method to Categorical Variables.mp4
24.09MB
54. Modelling for Machine Learning/1. Logistic Regression.mp4
29.34MB
54. Modelling for Machine Learning/2. Cross Validation.mp4
30.21MB
54. Modelling for Machine Learning/3. Roc Curve and Area Under Curve (AUC).mp4
41.71MB
54. Modelling for Machine Learning/4. Hyperparameter Optimization (with GridSearchCV).mp4
58.77MB
54. Modelling for Machine Learning/5. Decision Tree Algorithm.mp4
25.7MB
54. Modelling for Machine Learning/6. Support Vector Machine Algorithm.mp4
24.52MB
54. Modelling for Machine Learning/7. Random Forest Algorithm.mp4
29.78MB
54. Modelling for Machine Learning/8. Hyperparameter Optimization (with GridSearchCV).mp4
52.65MB
55. Conclusion/1. Project Conclusion and Sharing.mp4
28.66MB
6. Operations in Numpy Library/1. Operations with Comparison Operators.mp4
21.14MB
6. Operations in Numpy Library/2. Arithmetic Operations in Numpy.mp4
71.82MB
6. Operations in Numpy Library/3. Statistical Operations in Numpy.mp4
32.02MB
6. Operations in Numpy Library/4. Solving Second-Degree Equations with NumPy.mp4
24.2MB
7. Pandas Library Introduction/1. Introduction to Pandas Library.mp4
33.93MB
8. Series Structures in the Pandas Library/1. Creating a Pandas Series with a List.mp4
39.19MB
8. Series Structures in the Pandas Library/2. Creating a Pandas Series with a Dictionary.mp4
18.29MB
8. Series Structures in the Pandas Library/3. Creating Pandas Series with NumPy Array.mp4
11.97MB
8. Series Structures in the Pandas Library/4. Object Types in Series.mp4
19.58MB
8. Series Structures in the Pandas Library/5. Examining the Primary Features of the Pandas Seri.mp4
18.94MB
8. Series Structures in the Pandas Library/6. Most Applied Methods on Pandas Series.mp4
48.21MB
8. Series Structures in the Pandas Library/7. Indexing and Slicing Pandas Series.mp4
29.89MB
9. DataFrame Structures in Pandas Library/1. Creating Pandas DataFrame with List.mp4
22.57MB
9. DataFrame Structures in Pandas Library/2. Creating Pandas DataFrame with NumPy Array.mp4
12.1MB
9. DataFrame Structures in Pandas Library/3. Creating Pandas DataFrame with Dictionary.mp4
15.84MB
9. DataFrame Structures in Pandas Library/4. Examining the Properties of Pandas DataFrames.mp4
25.94MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统