首页 磁力链接怎么用

[FreeCourseLab.com] Udemy - Deep Learning Prerequisites Linear Regression in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-2-9 11:00 2024-12-11 01:46 291 904.05 MB 50
二维码链接
[FreeCourseLab.com] Udemy - Deep Learning Prerequisites Linear Regression in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Welcome/1. Welcome.mp449.68MB
  2. 1. Welcome/2. Introduction and Outline.mp46.33MB
  3. 1. Welcome/3. What is machine learning How does linear regression play a role.mp48.44MB
  4. 1. Welcome/4. Introduction to Moore's Law Problem.mp44.42MB
  5. 1. Welcome/6. How to Succeed in this Course.mp43.31MB
  6. 2. 1-D Linear Regression Theory and Code/1. Define the model in 1-D, derive the solution (Updated Version).mp419.34MB
  7. 2. 1-D Linear Regression Theory and Code/2. Define the model in 1-D, derive the solution.mp424.67MB
  8. 2. 1-D Linear Regression Theory and Code/3. Coding the 1-D solution in Python.mp414.44MB
  9. 2. 1-D Linear Regression Theory and Code/4. Exercise Theory vs. Code.mp41.05MB
  10. 2. 1-D Linear Regression Theory and Code/5. Determine how good the model is - r-squared.mp411.31MB
  11. 2. 1-D Linear Regression Theory and Code/6. R-squared in code.mp44.5MB
  12. 2. 1-D Linear Regression Theory and Code/7. Demonstrating Moore's Law in Code.mp417.5MB
  13. 2. 1-D Linear Regression Theory and Code/8. R-squared Quiz 1.mp42.8MB
  14. 3. Multiple linear regression and polynomial regression/1. Define the multi-dimensional problem and derive the solution (Updated Version).mp414.43MB
  15. 3. Multiple linear regression and polynomial regression/2. Define the multi-dimensional problem and derive the solution.mp436.08MB
  16. 3. Multiple linear regression and polynomial regression/3. How to solve multiple linear regression using only matrices.mp43.1MB
  17. 3. Multiple linear regression and polynomial regression/4. Coding the multi-dimensional solution in Python.mp414.91MB
  18. 3. Multiple linear regression and polynomial regression/5. Polynomial regression - extending linear regression (with Python code).mp416.4MB
  19. 3. Multiple linear regression and polynomial regression/6. Predicting Systolic Blood Pressure from Age and Weight.mp412.35MB
  20. 3. Multiple linear regression and polynomial regression/7. R-squared Quiz 2.mp43.5MB
  21. 4. Practical machine learning issues/1. What do all these letters mean.mp49.63MB
  22. 4. Practical machine learning issues/10. The Dummy Variable Trap.mp46.08MB
  23. 4. Practical machine learning issues/11. Gradient Descent Tutorial.mp422.8MB
  24. 4. Practical machine learning issues/12. Gradient Descent for Linear Regression.mp43.5MB
  25. 4. Practical machine learning issues/13. Bypass the Dummy Variable Trap with Gradient Descent.mp48.51MB
  26. 4. Practical machine learning issues/14. L1 Regularization - Theory.mp44.66MB
  27. 4. Practical machine learning issues/15. L1 Regularization - Code.mp48.27MB
  28. 4. Practical machine learning issues/16. L1 vs L2 Regularization.mp44.8MB
  29. 4. Practical machine learning issues/2. Interpreting the Weights.mp46.05MB
  30. 4. Practical machine learning issues/3. Generalization error, train and test sets.mp44.39MB
  31. 4. Practical machine learning issues/4. Generalization and Overfitting Demonstration in Code.mp417.26MB
  32. 4. Practical machine learning issues/5. Categorical inputs.mp48.19MB
  33. 4. Practical machine learning issues/6. One-Hot Encoding Quiz.mp43.77MB
  34. 4. Practical machine learning issues/7. Probabilistic Interpretation of Squared Error.mp48.14MB
  35. 4. Practical machine learning issues/8. L2 Regularization - Theory.mp46.66MB
  36. 4. Practical machine learning issues/9. L2 Regularization - Code.mp48.09MB
  37. 5. Conclusion and Next Steps/1. Brief overview of advanced linear regression and machine learning topics.mp48.13MB
  38. 5. Conclusion and Next Steps/2. Exercises, practice, and how to get good at this.mp47.17MB
  39. 6. Appendix/1. What is the Appendix.mp45.46MB
  40. 6. Appendix/10. What order should I take your courses in (part 1).mp429.32MB
  41. 6. Appendix/11. What order should I take your courses in (part 2).mp437.62MB
  42. 6. Appendix/12. Python 2 vs Python 3.mp47.84MB
  43. 6. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp44.03MB
  44. 6. Appendix/3. Windows-Focused Environment Setup 2018.mp4186.29MB
  45. 6. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  46. 6. Appendix/5. How to Code by Yourself (part 1).mp424.54MB
  47. 6. Appendix/6. How to Code by Yourself (part 2).mp414.81MB
  48. 6. Appendix/7. How to Succeed in this Course (Long Version).mp418.32MB
  49. 6. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  50. 6. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp478.29MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统