首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[GigaCourse.com] Udemy - Deep Learning with Keras and Tensorflow in Python and R
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-11-23 09:36
2024-11-14 20:17
264
4 GB
72
磁力链接
magnet:?xt=urn:btih:a24dc0ed8c01e123276ab97f1f6716e974dd2995
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmEyNGRjMGVkOGMwMWUxMjMyNzZhYjk3ZjFmNjcxNmU5NzRkZDI5OTVaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
GigaCourse
com
Udemy
-
Deep
Learning
with
Keras
and
Tensorflow
in
Python
and
R
文件列表
1. Introduction/1. Introduction.mp4
29.1MB
10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4
10.81MB
10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4
79.15MB
10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4
81.66MB
10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4
69.87MB
11. R - Building and training the Model/1. Building,Compiling and Training.mp4
130.73MB
11. R - Building and training the Model/2. Evaluating and Predicting.mp4
99.26MB
12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.mp4
155.87MB
12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.mp4
92.14MB
13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.mp4
131.14MB
13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.mp4
79.58MB
14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
151.63MB
15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
216.1MB
16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
60.64MB
17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
60.63MB
18. Add on Data Preprocessing/1. Gathering Business Knowledge.mp4
22.29MB
18. Add on Data Preprocessing/10. Outlier Treatment in Python.mp4
70.24MB
18. Add on Data Preprocessing/11. Outlier Treatment in R.mp4
30.75MB
18. Add on Data Preprocessing/12. Missing Value imputation.mp4
24.99MB
18. Add on Data Preprocessing/13. Missing Value Imputation in Python.mp4
23.42MB
18. Add on Data Preprocessing/14. Missing Value imputation in R.mp4
26MB
18. Add on Data Preprocessing/15. Seasonality in Data.mp4
17.04MB
18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4
100.47MB
18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.mp4
44.12MB
18. Add on Data Preprocessing/18. Variable transformation in R.mp4
55.43MB
18. Add on Data Preprocessing/19. Non Usable Variables.mp4
20.25MB
18. Add on Data Preprocessing/2. Data Exploration.mp4
20.51MB
18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
36.84MB
18. Add on Data Preprocessing/21. Dummy variable creation in Python.mp4
26.53MB
18. Add on Data Preprocessing/22. Dummy variable creation in R.mp4
43.97MB
18. Add on Data Preprocessing/3. The Data and the Data Dictionary.mp4
69.34MB
18. Add on Data Preprocessing/4. Importing Data in Python.mp4
27.84MB
18. Add on Data Preprocessing/5. Importing the dataset into R.mp4
13.1MB
18. Add on Data Preprocessing/6. Univariate Analysis and EDD.mp4
24.2MB
18. Add on Data Preprocessing/7. EDD in Python.mp4
61.78MB
18. Add on Data Preprocessing/8. EDD in R.mp4
96.98MB
18. Add on Data Preprocessing/9. Outlier Treatment.mp4
24.48MB
19. Test Train Split/1. Test-train split.mp4
41.87MB
19. Test Train Split/2. Bias Variance trade-off.mp4
25.1MB
19. Test Train Split/3. Test train split in Python.mp4
44.87MB
19. Test Train Split/4. Test train split in R.mp4
75.62MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
16.28MB
2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4
65.2MB
2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4
40.92MB
2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4
12.75MB
2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4
64.44MB
2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4
60.32MB
2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4
43.89MB
2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4
46.89MB
2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4
40.35MB
3. Setting up R Studio and R Crash Course/1. Installing R and R studio.mp4
35.7MB
3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.mp4
38.85MB
3. Setting up R Studio and R Crash Course/3. Packages in R.mp4
82.95MB
3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.mp4
40.73MB
3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.mp4
25.52MB
3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.mp4
60.07MB
3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.mp4
96.76MB
3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.mp4
42.01MB
4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4
44.75MB
4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4
34.63MB
4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4
86.59MB
5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
40.43MB
5. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
60.34MB
5. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
122.2MB
6. Important concepts Common Interview questions/1. Some Important Concepts.mp4
62.18MB
7. Standard Model Parameters/1. Hyperparameters.mp4
45.35MB
8. Tensorflow and Keras/1. Keras and Tensorflow.mp4
14.92MB
8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.mp4
20.06MB
8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.mp4
22.83MB
9. Dataset for classification problem/1. Python - Dataset for classification problem.mp4
56.18MB
9. Dataset for classification problem/2. Python - Normalization and Test-Train split.mp4
44.21MB
9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.mp4
111.81MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统