首页 磁力链接怎么用

[GigaCourse.com] Udemy - Deep Learning with Keras and Tensorflow in Python and R

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2020-11-23 09:36 2024-11-14 20:17 264 4 GB 72
二维码链接
[GigaCourse.com] Udemy - Deep Learning with Keras and Tensorflow in Python and R的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Introduction.mp429.1MB
  2. 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp410.81MB
  3. 10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp479.15MB
  4. 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp481.66MB
  5. 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp469.87MB
  6. 11. R - Building and training the Model/1. Building,Compiling and Training.mp4130.73MB
  7. 11. R - Building and training the Model/2. Evaluating and Predicting.mp499.26MB
  8. 12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.mp4155.87MB
  9. 12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.mp492.14MB
  10. 13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.mp4131.14MB
  11. 13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.mp479.58MB
  12. 14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4151.63MB
  13. 15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4216.1MB
  14. 16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.mp460.64MB
  15. 17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.mp460.63MB
  16. 18. Add on Data Preprocessing/1. Gathering Business Knowledge.mp422.29MB
  17. 18. Add on Data Preprocessing/10. Outlier Treatment in Python.mp470.24MB
  18. 18. Add on Data Preprocessing/11. Outlier Treatment in R.mp430.75MB
  19. 18. Add on Data Preprocessing/12. Missing Value imputation.mp424.99MB
  20. 18. Add on Data Preprocessing/13. Missing Value Imputation in Python.mp423.42MB
  21. 18. Add on Data Preprocessing/14. Missing Value imputation in R.mp426MB
  22. 18. Add on Data Preprocessing/15. Seasonality in Data.mp417.04MB
  23. 18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4100.47MB
  24. 18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.mp444.12MB
  25. 18. Add on Data Preprocessing/18. Variable transformation in R.mp455.43MB
  26. 18. Add on Data Preprocessing/19. Non Usable Variables.mp420.25MB
  27. 18. Add on Data Preprocessing/2. Data Exploration.mp420.51MB
  28. 18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp436.84MB
  29. 18. Add on Data Preprocessing/21. Dummy variable creation in Python.mp426.53MB
  30. 18. Add on Data Preprocessing/22. Dummy variable creation in R.mp443.97MB
  31. 18. Add on Data Preprocessing/3. The Data and the Data Dictionary.mp469.34MB
  32. 18. Add on Data Preprocessing/4. Importing Data in Python.mp427.84MB
  33. 18. Add on Data Preprocessing/5. Importing the dataset into R.mp413.1MB
  34. 18. Add on Data Preprocessing/6. Univariate Analysis and EDD.mp424.2MB
  35. 18. Add on Data Preprocessing/7. EDD in Python.mp461.78MB
  36. 18. Add on Data Preprocessing/8. EDD in R.mp496.98MB
  37. 18. Add on Data Preprocessing/9. Outlier Treatment.mp424.48MB
  38. 19. Test Train Split/1. Test-train split.mp441.87MB
  39. 19. Test Train Split/2. Bias Variance trade-off.mp425.1MB
  40. 19. Test Train Split/3. Test train split in Python.mp444.87MB
  41. 19. Test Train Split/4. Test train split in R.mp475.62MB
  42. 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp416.28MB
  43. 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp465.2MB
  44. 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp440.92MB
  45. 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp412.75MB
  46. 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp464.44MB
  47. 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp460.32MB
  48. 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp443.89MB
  49. 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp446.89MB
  50. 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp440.35MB
  51. 3. Setting up R Studio and R Crash Course/1. Installing R and R studio.mp435.7MB
  52. 3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.mp438.85MB
  53. 3. Setting up R Studio and R Crash Course/3. Packages in R.mp482.95MB
  54. 3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.mp440.73MB
  55. 3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.mp425.52MB
  56. 3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.mp460.07MB
  57. 3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.mp496.76MB
  58. 3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.mp442.01MB
  59. 4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp444.75MB
  60. 4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp434.63MB
  61. 4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp486.59MB
  62. 5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp440.43MB
  63. 5. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp460.34MB
  64. 5. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4122.2MB
  65. 6. Important concepts Common Interview questions/1. Some Important Concepts.mp462.18MB
  66. 7. Standard Model Parameters/1. Hyperparameters.mp445.35MB
  67. 8. Tensorflow and Keras/1. Keras and Tensorflow.mp414.92MB
  68. 8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.mp420.06MB
  69. 8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.mp422.83MB
  70. 9. Dataset for classification problem/1. Python - Dataset for classification problem.mp456.18MB
  71. 9. Dataset for classification problem/2. Python - Normalization and Test-Train split.mp444.21MB
  72. 9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.mp4111.81MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统