首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeCourseSite.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2022-1-28 13:16
2025-1-9 05:51
331
11 GB
247
磁力链接
magnet:?xt=urn:btih:ea5bb5e755b980e7133edfa8b99d3d11d63cd87d
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmVhNWJiNWU3NTViOTgwZTcxMzNlZGZhOGI5OWQzZDExZDYzY2Q4N2RaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeCourseSite
com
Udemy
-
Machine
Learning
A-Z™
Hands-On
Python
&
R
In
Data
Science
文件列表
1. Welcome to the course!/1. Applications of Machine Learning.mp4
9.81MB
1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4
23.22MB
1. Welcome to the course!/5. Why Machine Learning is the Future.mp4
14.49MB
1. Welcome to the course!/9. Presentation of the ML A-Z folder, Colaboratory, Jupyter Notebook and Spyder.mp4
94.8MB
10. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4
25.33MB
10. Decision Tree Regression/3. Decision Tree Regression in Python - Step 1.mp4
42.39MB
10. Decision Tree Regression/4. Decision Tree Regression in Python - Step 2.mp4
26.26MB
10. Decision Tree Regression/5. Decision Tree Regression in Python - Step 3.mp4
19.47MB
10. Decision Tree Regression/6. Decision Tree Regression in Python - Step 4.mp4
54.79MB
10. Decision Tree Regression/7. Decision Tree Regression in R.mp4
56.24MB
11. Random Forest Regression/1. Random Forest Regression Intuition.mp4
15.65MB
11. Random Forest Regression/3. Random Forest Regression in Python.mp4
74.39MB
11. Random Forest Regression/4. Random Forest Regression in R.mp4
51.87MB
12. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4
9.81MB
12. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4
21.42MB
13. Regression Model Selection in Python/2. Preparation of the Regression Code Templates.mp4
123.59MB
13. Regression Model Selection in Python/3. THE ULTIMATE DEMO OF THE POWERFUL REGRESSION CODE TEMPLATES IN ACTION!.mp4
56.78MB
14. Regression Model Selection in R/1. Evaluating Regression Models Performance - Homework's Final Part.mp4
28.36MB
14. Regression Model Selection in R/2. Interpreting Linear Regression Coefficients.mp4
27.38MB
16. Logistic Regression/1. Logistic Regression Intuition.mp4
29.18MB
16. Logistic Regression/10. Logistic Regression in R - Step 1.mp4
15.73MB
16. Logistic Regression/11. Logistic Regression in R - Step 2.mp4
14.85MB
16. Logistic Regression/12. Logistic Regression in R - Step 3.mp4
27.45MB
16. Logistic Regression/13. Logistic Regression in R - Step 4.mp4
11.73MB
16. Logistic Regression/15. Logistic Regression in R - Step 5.mp4
93.77MB
16. Logistic Regression/16. R Classification Template.mp4
17.51MB
16. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4
44.6MB
16. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4
84.66MB
16. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4
43.05MB
16. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4
45.2MB
16. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4
30.59MB
16. Logistic Regression/8. Logistic Regression in Python - Step 6.mp4
52.96MB
16. Logistic Regression/9. Logistic Regression in Python - Step 7.mp4
118.63MB
17. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4
10.48MB
17. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4
146.61MB
17. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4
55.78MB
18. Support Vector Machine (SVM)/2. SVM Intuition.mp4
19.92MB
18. Support Vector Machine (SVM)/4. SVM in Python.mp4
104.75MB
18. Support Vector Machine (SVM)/5. SVM in R.mp4
65.32MB
19. Kernel SVM/1. Kernel SVM Intuition.mp4
6.42MB
19. Kernel SVM/2. Mapping to a higher dimension.mp4
15.4MB
19. Kernel SVM/3. The Kernel Trick.mp4
34.73MB
19. Kernel SVM/4. Types of Kernel Functions.mp4
15.71MB
19. Kernel SVM/5. Non-Linear Kernel SVR (Advanced).mp4
65.64MB
19. Kernel SVM/7. Kernel SVM in Python.mp4
88.37MB
19. Kernel SVM/8. Kernel SVM in R.mp4
52.82MB
20. Naive Bayes/1. Bayes Theorem.mp4
50.44MB
20. Naive Bayes/2. Naive Bayes Intuition.mp4
31.11MB
20. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4
13.27MB
20. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4
18.94MB
20. Naive Bayes/6. Naive Bayes in Python.mp4
100.47MB
20. Naive Bayes/7. Naive Bayes in R.mp4
49.8MB
21. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4
21.63MB
21. Decision Tree Classification/3. Decision Tree Classification in Python.mp4
108.06MB
21. Decision Tree Classification/4. Decision Tree Classification in R.mp4
68.19MB
22. Random Forest Classification/1. Random Forest Classification Intuition.mp4
25.66MB
22. Random Forest Classification/3. Random Forest Classification in Python.mp4
96.69MB
22. Random Forest Classification/4. Random Forest Classification in R.mp4
64.11MB
23. Classification Model Selection in Python/2. THE ULTIMATE DEMO OF THE POWERFUL CLASSIFICATION CODE TEMPLATES IN ACTION!.mp4
135.99MB
24. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4
15.13MB
24. Evaluating Classification Models Performance/2. Confusion Matrix.mp4
8.91MB
24. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4
4.22MB
24. Evaluating Classification Models Performance/4. CAP Curve.mp4
20.32MB
24. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4
12.95MB
26. K-Means Clustering/1. K-Means Clustering Intuition.mp4
29.97MB
26. K-Means Clustering/10. K-Means Clustering in R.mp4
36.91MB
26. K-Means Clustering/2. K-Means Random Initialization Trap.mp4
15.37MB
26. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4
25.69MB
26. K-Means Clustering/5. K-Means Clustering in Python - Step 1.mp4
38.09MB
26. K-Means Clustering/6. K-Means Clustering in Python - Step 2.mp4
54.08MB
26. K-Means Clustering/7. K-Means Clustering in Python - Step 3.mp4
81.33MB
26. K-Means Clustering/8. K-Means Clustering in Python - Step 4.mp4
35.1MB
26. K-Means Clustering/9. K-Means Clustering in Python - Step 5.mp4
120.5MB
27. Hierarchical Clustering/10. Hierarchical Clustering in R - Step 2.mp4
13.87MB
27. Hierarchical Clustering/11. Hierarchical Clustering in R - Step 3.mp4
9.96MB
27. Hierarchical Clustering/12. Hierarchical Clustering in R - Step 4.mp4
10.18MB
27. Hierarchical Clustering/13. Hierarchical Clustering in R - Step 5.mp4
13.68MB
27. Hierarchical Clustering/2. Hierarchical Clustering Intuition.mp4
16.52MB
27. Hierarchical Clustering/3. Hierarchical Clustering How Dendrograms Work.mp4
17.47MB
27. Hierarchical Clustering/4. Hierarchical Clustering Using Dendrograms.mp4
22.82MB
27. Hierarchical Clustering/6. Hierarchical Clustering in Python - Step 1.mp4
40.23MB
27. Hierarchical Clustering/7. Hierarchical Clustering in Python - Step 2.mp4
135.92MB
27. Hierarchical Clustering/8. Hierarchical Clustering in Python - Step 3.mp4
75.29MB
27. Hierarchical Clustering/9. Hierarchical Clustering in R - Step 1.mp4
8.59MB
29. Apriori/1. Apriori Intuition.mp4
35.02MB
29. Apriori/3. Apriori in Python - Step 1.mp4
69.84MB
29. Apriori/4. Apriori in Python - Step 2.mp4
107.7MB
29. Apriori/5. Apriori in Python - Step 3.mp4
69.2MB
29. Apriori/6. Apriori in Python - Step 4.mp4
164.33MB
29. Apriori/7. Apriori in R - Step 1.mp4
52.84MB
29. Apriori/8. Apriori in R - Step 2.mp4
38.82MB
29. Apriori/9. Apriori in R - Step 3.mp4
56.51MB
3. Data Preprocessing in Python/2. Getting Started.mp4
54.34MB
3. Data Preprocessing in Python/3. Importing the Libraries.mp4
15.98MB
3. Data Preprocessing in Python/4. Importing the Dataset.mp4
71.79MB
3. Data Preprocessing in Python/6. Taking care of Missing Data.mp4
69.02MB
3. Data Preprocessing in Python/7. Encoding Categorical Data.mp4
88.63MB
3. Data Preprocessing in Python/8. Splitting the dataset into the Training set and Test set.mp4
67.63MB
3. Data Preprocessing in Python/9. Feature Scaling.mp4
101.72MB
30. Eclat/1. Eclat Intuition.mp4
10.66MB
30. Eclat/3. Eclat in Python.mp4
75.55MB
30. Eclat/4. Eclat in R.mp4
25.26MB
32. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4
30.2MB
32. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in Python - Step 7.mp4
43.34MB
32. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 1.mp4
34.01MB
32. Upper Confidence Bound (UCB)/12. Upper Confidence Bound in R - Step 2.mp4
34.1MB
32. Upper Confidence Bound (UCB)/13. Upper Confidence Bound in R - Step 3.mp4
57.84MB
32. Upper Confidence Bound (UCB)/14. Upper Confidence Bound in R - Step 4.mp4
9.55MB
32. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4
29.33MB
32. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4
58.74MB
32. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4
17.75MB
32. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4
38.47MB
32. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4
85.38MB
32. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in Python - Step 5.mp4
32.43MB
32. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in Python - Step 6.mp4
44.9MB
33. Thompson Sampling/1. Thompson Sampling Intuition.mp4
37.28MB
33. Thompson Sampling/10. Thompson Sampling in R - Step 2.mp4
9.56MB
33. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4
14.08MB
33. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4
30.59MB
33. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4
70.01MB
33. Thompson Sampling/6. Thompson Sampling in Python - Step 3.mp4
78.66MB
33. Thompson Sampling/7. Thompson Sampling in Python - Step 4.mp4
44.64MB
33. Thompson Sampling/9. Thompson Sampling in R - Step 1.mp4
51.04MB
34. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 4.mp4
60.11MB
34. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 5.mp4
89.63MB
34. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 6.mp4
52.9MB
34. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.mp4
51.2MB
34. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.mp4
21.66MB
34. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.mp4
16.89MB
34. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.mp4
8.25MB
34. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.mp4
5.78MB
34. -------------------- Part 7 Natural Language Processing --------------------/2. NLP Intuition.mp4
12.71MB
34. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.mp4
16.1MB
34. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.mp4
9.59MB
34. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.mp4
17.23MB
34. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.mp4
37.7MB
34. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.mp4
54.15MB
34. -------------------- Part 7 Natural Language Processing --------------------/3. Types of Natural Language Processing.mp4
22.5MB
34. -------------------- Part 7 Natural Language Processing --------------------/4. Classical vs Deep Learning Models.mp4
83.95MB
34. -------------------- Part 7 Natural Language Processing --------------------/5. Bag-Of-Words Model.mp4
103.5MB
34. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 1.mp4
34.07MB
34. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 2.mp4
40.48MB
34. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 3.mp4
60.61MB
35. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.mp4
31.32MB
36. Artificial Neural Networks/1. Plan of attack.mp4
4.74MB
36. Artificial Neural Networks/11. ANN in Python - Step 1.mp4
66.47MB
36. Artificial Neural Networks/13. ANN in Python - Step 2.mp4
111.03MB
36. Artificial Neural Networks/14. ANN in Python - Step 3.mp4
75.07MB
36. Artificial Neural Networks/15. ANN in Python - Step 4.mp4
65.38MB
36. Artificial Neural Networks/16. ANN in Python - Step 5.mp4
101.34MB
36. Artificial Neural Networks/17. ANN in R - Step 1.mp4
49.9MB
36. Artificial Neural Networks/18. ANN in R - Step 2.mp4
18.24MB
36. Artificial Neural Networks/19. ANN in R - Step 3.mp4
37.86MB
36. Artificial Neural Networks/2. The Neuron.mp4
29.87MB
36. Artificial Neural Networks/20. ANN in R - Step 4 (Last step).mp4
43.76MB
36. Artificial Neural Networks/3. The Activation Function.mp4
14.76MB
36. Artificial Neural Networks/4. How do Neural Networks work.mp4
23.53MB
36. Artificial Neural Networks/5. How do Neural Networks learn.mp4
26.56MB
36. Artificial Neural Networks/6. Gradient Descent.mp4
18.54MB
36. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4
16.82MB
36. Artificial Neural Networks/8. Backpropagation.mp4
10.93MB
36. Artificial Neural Networks/9. Business Problem Description.mp4
29.24MB
37. Convolutional Neural Networks/1. Plan of attack.mp4
5.9MB
37. Convolutional Neural Networks/11. CNN in Python - Step 1.mp4
70.8MB
37. Convolutional Neural Networks/12. CNN in Python - Step 2.mp4
106.88MB
37. Convolutional Neural Networks/13. CNN in Python - Step 3.mp4
118.59MB
37. Convolutional Neural Networks/14. CNN in Python - Step 4.mp4
40.02MB
37. Convolutional Neural Networks/15. CNN in Python - Step 5.mp4
97.68MB
37. Convolutional Neural Networks/16. CNN in Python - FINAL DEMO!.mp4
152.77MB
37. Convolutional Neural Networks/2. What are convolutional neural networks.mp4
29.51MB
37. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4
31.02MB
37. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4
14.09MB
37. Convolutional Neural Networks/5. Step 2 - Pooling.mp4
40.25MB
37. Convolutional Neural Networks/6. Step 3 - Flattening.mp4
3.27MB
37. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4
42.75MB
37. Convolutional Neural Networks/8. Summary.mp4
7.92MB
37. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4
33.24MB
39. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4
32.12MB
39. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4
112.91MB
39. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4
40.79MB
39. Principal Component Analysis (PCA)/5. PCA in R - Step 1.mp4
30.66MB
39. Principal Component Analysis (PCA)/6. PCA in R - Step 2.mp4
29.03MB
39. Principal Component Analysis (PCA)/7. PCA in R - Step 3.mp4
36.74MB
4. Data Preprocessing in R/10. Data Preprocessing Template.mp4
50.74MB
4. Data Preprocessing in R/2. Getting Started.mp4
9.81MB
4. Data Preprocessing in R/4. Dataset Description.mp4
11.84MB
4. Data Preprocessing in R/5. Importing the Dataset.mp4
16.42MB
4. Data Preprocessing in R/6. Taking care of Missing Data.mp4
39.79MB
4. Data Preprocessing in R/7. Encoding Categorical Data.mp4
57.32MB
4. Data Preprocessing in R/8. Splitting the dataset into the Training set and Test set.mp4
86.5MB
4. Data Preprocessing in R/9. Feature Scaling.mp4
78.89MB
40. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4
26.99MB
40. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4
102MB
40. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4
51.29MB
41. Kernel PCA/2. Kernel PCA in Python.mp4
77.5MB
41. Kernel PCA/3. Kernel PCA in R.mp4
56.58MB
43. Model Selection/2. k-Fold Cross Validation in Python.mp4
112.37MB
43. Model Selection/3. Grid Search in Python.mp4
151.79MB
43. Model Selection/4. k-Fold Cross Validation in R.mp4
43.64MB
43. Model Selection/5. Grid Search in R.mp4
35.55MB
44. XGBoost/2. XGBoost in Python.mp4
89.99MB
44. XGBoost/4. XGBoost in R.mp4
47.27MB
44. XGBoost/5. THANK YOU Bonus Video.mp4
52.25MB
6. Simple Linear Regression/1. Simple Linear Regression Intuition - Step 1.mp4
10.53MB
6. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4
24.87MB
6. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4
11.43MB
6. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4
49.16MB
6. Simple Linear Regression/2. Simple Linear Regression Intuition - Step 2.mp4
5.99MB
6. Simple Linear Regression/4. Simple Linear Regression in Python - Step 1.mp4
48.61MB
6. Simple Linear Regression/5. Simple Linear Regression in Python - Step 2.mp4
39.85MB
6. Simple Linear Regression/6. Simple Linear Regression in Python - Step 3.mp4
28.22MB
6. Simple Linear Regression/7. Simple Linear Regression in Python - Step 4.mp4
74.57MB
6. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4
11.53MB
7. Multiple Linear Regression/1. Dataset + Business Problem Description.mp4
12.56MB
7. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4
62.33MB
7. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4
58.21MB
7. Multiple Linear Regression/12. Multiple Linear Regression in Python - Step 4.mp4
72.52MB
7. Multiple Linear Regression/15. Multiple Linear Regression in R - Step 1.mp4
23.44MB
7. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 2.mp4
45.22MB
7. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 3.mp4
13.85MB
7. Multiple Linear Regression/18. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4
50.79MB
7. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4
21.95MB
7. Multiple Linear Regression/2. Multiple Linear Regression Intuition - Step 1.mp4
2MB
7. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 2.mp4
2.04MB
7. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 3.mp4
16.59MB
7. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 4.mp4
5.34MB
7. Multiple Linear Regression/6. Understanding the P-Value.mp4
56.48MB
7. Multiple Linear Regression/7. Multiple Linear Regression Intuition - Step 5.mp4
32.81MB
7. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4
50.92MB
8. Polynomial Regression/1. Polynomial Regression Intuition.mp4
9.44MB
8. Polynomial Regression/10. Polynomial Regression in R - Step 4.mp4
28.52MB
8. Polynomial Regression/11. R Regression Template.mp4
31.34MB
8. Polynomial Regression/3. Polynomial Regression in Python - Step 1.mp4
58.25MB
8. Polynomial Regression/4. Polynomial Regression in Python - Step 2.mp4
69.31MB
8. Polynomial Regression/5. Polynomial Regression in Python - Step 3.mp4
77.86MB
8. Polynomial Regression/6. Polynomial Regression in Python - Step 4.mp4
38.79MB
8. Polynomial Regression/7. Polynomial Regression in R - Step 1.mp4
21.21MB
8. Polynomial Regression/8. Polynomial Regression in R - Step 2.mp4
32.28MB
8. Polynomial Regression/9. Polynomial Regression in R - Step 3.mp4
54.81MB
9. Support Vector Regression (SVR)/1. SVR Intuition (Updated!).mp4
36.85MB
9. Support Vector Regression (SVR)/2. Heads-up on non-linear SVR.mp4
19.78MB
9. Support Vector Regression (SVR)/4. SVR in Python - Step 1.mp4
42.56MB
9. Support Vector Regression (SVR)/5. SVR in Python - Step 2.mp4
86.92MB
9. Support Vector Regression (SVR)/6. SVR in Python - Step 3.mp4
34.8MB
9. Support Vector Regression (SVR)/7. SVR in Python - Step 4.mp4
46.3MB
9. Support Vector Regression (SVR)/8. SVR in Python - Step 5.mp4
93.64MB
9. Support Vector Regression (SVR)/9. SVR in R.mp4
33.73MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统